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We develop a general likelihood-based framework for use in the esti-
mation of neural firing rates, which is designed to choose the temporal
smoothing parameters that maximize the likelihood of missing data. This
general framework is algorithm-independent and thus can be applied to
a multitude of established methods for firing rate or conditional inten-
sity estimation. As a simple example of the use of the general framework,
we apply it to the peristimulus time histogram and kernel smoother, the
methods most widely used for firing rate estimation in the electrophys-
iological literature and practice. In doing so, we illustrate how the use
of the framework can employ the general point process likelihood as
a principled cost function and can provide substantial improvements in
estimation accuracy for even the most basic of rate estimation algorithms.
In particular, the resultant kernel smoother is simple to implement, effi-
cient to compute, and can accurately determine the bandwidth of a given
rate process from individual spike trains. We perform a simulation study
to illustrate how the likelihood framework enables the kernel smoother
to pick the bandwidth parameter that best predicts missing data, and
we show applications to real experimental spike train data. Additionally,
we discuss how the general likelihood framework may be used in con-
junction with more sophisticated methods for firing rate and conditional
intensity estimation and suggest possible applications.

1 Introduction

The estimation of firing rates from neural spike train data is useful for re-
lating patterns of discrete spikes to continuous correlates of neural activity.
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Firing rate is a helpful mathematical construct rather than a biologically
observable signal, so it is impossible to empirically verify the accuracy of a
rate estimate. It is therefore important to derive principled computational
approaches to select the parameters and methodologies used in rate esti-
mation so that the choice of the degree of smoothing is not unfounded or
misleading. Inappropriate estimates of rate can lead to spurious results in
higher-level analyses. Herein, we describe how parameter selection based
on maximizing the likelihood of missing data can significantly increase the
accuracy of rate estimation algorithms. We illustrate the ability of the gen-
eral framework to improve simple, commonly used smoothing procedures
and discuss how it can be used in the development of more sophisticated
methods.

Since the early findings that neural firing rates can be related to sen-
sory stimuli (Adrian & Zotterman, 1926), numerous methods have been
developed to define continuous measures of spiking intensity (Cunning-
ham, Gilja, Ryu, & Shenoy, 2009). In the electrophysiological literature, the
most commonly employed methods for calculating neural firing rates are
the time histogram (Gerstein & Kiang, 1960) and kernel smoother (Parzen,
1962; Sanderson, 1980; Nawrot, Aertsen, & Rotter, 1999). Discussions of
these methods can be found in the appendix and in Dayan and Abbott
(2001). A common feature of these methodologies is the need to select a
bandwidth parameter, which affects the temporal range over which the
smoothing algorithm incorporates information.

The selection of the bandwidth parameter imposes particular assump-
tions about the physiology of the neuron producing the spike train. Specifi-
cally, the bandwidth size defines the time course over which the neuron can
change its firing rate, with a large bandwidth implying a slowly changing
firing rate and a small bandwidth implying a rapidly changing rate. Math-
ematically, the effects of the bandwidth can be described as governing the
maximum of the absolute value of the second derivative of the rate pro-
cess. Thus, beyond the signal processing definition, we will use the term
bandwidth to describe the intrinsic factors governing the expected rate of
change in neural spiking activity for a given neuron.

Many approaches to bandwidth selection in kernel estimators have been
developed in the density estimation literature (Turlach, 1993). Based on
these kernel bandwidth estimation methods, specific nongeneralized algo-
rithms have been developed for neural data involving user-defined cost
functions (Shimazaki & Shinomoto, 2007a, 2007b), or empirically derived
heuristics (Nawrot et al., 1999). Kernel smoother bandwidth has also been
defined adaptively as a function of spike frequency (Richmond, Optican, &
Spitzer, 1990). In the electrophysiological literature, however, the values of
the bandwidth parameters are almost exclusively determined ad hoc, based
solely on experimenter preference.

Model-based approaches for calculating the instantaneous spiking
probability have also been shown to be useful in characterizing the
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firing properties of neural ensembles. Techniques such as generalized-
linear (McCullagh, 1984; Truccolo, Eden, Fellows, Donoghue, & Brown,
2005) and state-space (Brown, Frank, Tang, Quirk, & Wilson, 1998; Brown,
Nguyen, Frank, Wilson, & Solo, 2001; Eden, Frank, Barbieri, Solo, &
Brown, 2004; Czanner et al. 2008; Kulkarni & Paninski, 2008) model-
ing relate neural spiking activity to other observed experimental corre-
lates such as the spiking history, spatial location, or other experimental
or biologically relevant factors. Parametric modeling is powerful because
parameter estimates are fit to the data, providing statistical justification
for the degree of smoothing. The model structure itself often provides bi-
ologically relevant explanations of firing rate–related phenomena. How-
ever, these parametric methods rely heavily on modeling assumptions
and often require additional data from correlates of spiking activity
to fit the model. Bayesian methods (DiMatteo, Genovese, & Kass, 2001;
Kass, Ventura, & Cai, 2003; Cunningham, Yu, Shenoy, & Sahani, 2008;
Endres & Oram, 2009) have also been effectively used to capture
firing rate and to work as smoothers of a peristimulus time histogram
(PSTH).

In general, most firing rate bandwidth estimation procedures choose
bandwidth based on the optimization of a cost function, designed to penal-
ize bandwidths that oversmooth or undersmooth the data. An issue with
these methods is that the selection of the cost functions is often highly sub-
jective and that different cost functions can produce disparate results. In
striving toward a more principled cost function for spike smoothing, we
develop a framework based on the likelihood of a general point process,
a natural means of assessing goodness-of-fit for models of spiking activ-
ity. The application of the likelihood to firing rate bandwidth estimation,
however, is nontrivial. Since reducing the size of the bandwidth will pro-
duce a rate better able to capture the individual spikes, the likelihood of
the spike train will tend to increase as the bandwidth size approaches 0.
Consequently, maximum likelihood (ML) procedures on the bandwidth pa-
rameter will always choose small bandwidth sizes with rates that greatly
undersmooth the data.

As a solution, we develop an estimation procedure that sequentially
treats each data point as unknown and selects the bandwidth that best
predicts the missing data. To do this, we compute the likelihood of the
missing data points given all the remaining spiking activity. This cross-
validated likelihood is the tool that makes maximum likelihood bandwidth
estimation possible.

While cross-validation schemes and likelihoods have been used with re-
gard to general parametric model fitting (Harris, Csicsvari, Hirase, Dragoi,
& Buzsáki, 2003; Itskov, Curto, & Harris, 2008), to our knowledge, neither
the general point process likelihood nor cross-validation schemes have thus
far been applied to bandwidth selection in the calculation of neural firing
rates, for the reasons we have set out.
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This general likelihood procedure is centered around operations on an
estimated instantaneous firing rate, the common output of all rate estima-
tion procedures. Consequently, the framework is independent of the actual
rate estimation procedure and can be applied to any of the many algorithms
developed in the literature for firing rate or conditional intensity estima-
tion. (For useful discussions of the myriad of rate estimation methods and
a comparison thereof, see Cunningham et al., 2009.)

As a demonstration of the many possible applications of the general
framework and the resultant benefits, the framework is adapted to the time
histogram and the kernel smoother, the two most common approaches to
rate estimation used in the experimental literature. We discuss the specific
innovations necessary to adapt the methods to the likelihood framework,
as well as optimizations for efficiently computing the cross-validated like-
lihood. The goal here is not to uncover a single optimal rate estimation
procedure, but rather to illustrate the vast reduction in estimation error that
can be achieved when the general likelihood framework is applied to even
the most basic means of spike smoothing. We present a simulation study as
well as applications to real data, in which we compare the standard meth-
ods, using ad hoc parameter selection, to their cross-validated incarnations,
for which the bandwidth is selected based on the cross-validated likelihood
procedure. We discuss possible future applications for the framework and
potential improvements in estimation accuracy achieved by doing so.

2 Materials and Methods

2.1 Calculating Firing Rate Using Smoothers. Firing rate, r (t), is most
generally defined as the instantaneous probability of spiking at time t,

r (t) = lim
�t→0

Pr
[
spike in (t, t + �t]

]
�t

= lim
�t→0

E
[
�N(t,t+�t]

]
�t

, (2.1)

where �N(a ,b] is the spike count between times aand b.
The instantaneous probability of a neuron firing at a given time is typi-

cally unknown, so the expected number of spikes in a small interval must
be estimated. Numerous different rate estimates can be computed for the
same neural data (see Figure 1) depending on the smoothing methodology,
model, or parameters used in the estimation ofE

[
�N(t,t+�t)

]
.

In Figures 1a through 1d, four different firing rate estimates are shown
for the same 5 s simulated spike train, along with the spike raster. For
this spike train, 250 ms (see Figure 1a) and 800 ms (see Figure 1b) time
histograms, as well as 100 ms (see Figure 1c) and 1500 ms (see Figure
1d) Hanning kernel smoothers (described in detail in the appendix), are
computed. Smoothers with a small bandwidth, like those in Figures 1a
and 1c, combine information from highly localized temporal regions and
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Figure 1: Variation in rate estimation due to parameter selection for spike train.
For a 5s stimulated spike train, 250 ms (a) and 800 ms (b) time histograms, as
well as 100 ms (c) and 1500 ms (d) Hanning kernel smoothers are computed.
(e) A theoretical spike train from multiple trials from a sparsely firing neuron
showing frequency adaptation can be shown to have increasing (gray curve),
constant (solid black curve), or decreasing (dashed black curve) rates based on
the position of the bin boundary. (f) An undersmoothed rate estimate (gray
curve) is shown for a similar theoretical spike train.

produce fluctuating estimates with a short time course for changes in firing
rate. Smoothers with a large bandwidth, like those in Figures 1b and 1d,
combine information from wide temporal regions and produce smooth rate
estimates with a long time course for changes in firing rate.
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In practice, an accurate evaluation of the bandwidth of neural firing is
important when making context-based comparisons of firing activity or
computing correlations between firing rate and simultaneously observed
experimental measurements. In the electrophysiological literature, band-
width is almost exclusively chosen ad hoc, without statistical justification.
In the absence of a principled approach for selecting bandwidth, param-
eters are often chosen so that the bandwidth of the smoothed firing rate
matches that of a stimulus that is presupposed to be correlated with the
spiking data. Oversmoothing or undersmoothing the data due to inap-
propriate bandwidth selection can affect statistical analyses and lead to
incorrect conclusions about the neural system.

Figures 1e and 1f show a schematic of the superposition of very sparsely
spiking activity over multiple trials, exhibiting a decreasing spike rate sim-
ilar to a neuron with phasic response properties. In Figure 1e, three time
histograms are shown, based on different bandwidths, that affect bin bound-
aries. If the boundary of a bin fell at point A, there would be three spikes
in the first bin and five spikes in the second bin—describing increasing
spiking activity (gray curve). If the bandwidth was increased slightly so
that bin the boundary fell at point B, there would be four spikes in each
bin—describing constant spiking activity (black curve). If the bandwidth
was increased slightly more so that the bin boundary fell at point C, then
five spikes would fall in the first bin and three in the second bin—describing
decreasing spiking activity (dashed curve). It is a prevailing intuition that
picking a small bandwidth is always safe because it allows greater flexibil-
ity in estimates. However, undersmoothing the data can obfuscate larger,
more important trends. In Figure 1f, a small bandwidth is used in the time
histogram rate calculation and provides little information about the larger
trends in firing rate.

A more striking example of the dangers of incorrect bandwidth selection
is illustrated by the spiking activity shown in the example in Figures 1a to
1d, which was generated using a physiological model of neural firing based
on an external stimulus. While the firing rates shown in Figures 1a to 1d may
all appear to be reasonable approximations of the neural spiking activity, we
shall see that two of the four rate estimates produce incorrect conclusions
about the relationship between the spiking data and the stimulus. Thus,
it is vital to choose bandwidth in such a way as to preserve correlation
when it exists and prevent spurious correlation estimates when it does
not.

It should be noted that herein, all presented spiking data can be viewed
as a spike train from a single trial, the superposition of the spikes from mul-
tiple trials, or the aggregate spike count across trials. While multitrial data
are most prevalent in the neuroscience literature, there are many instances
within neuroscience in which single-trial data are routinely used, such
as the decoding procedures found within in neural prosthetics algorithms
or the calculation of correlations between neural firing rates and other
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stimuli. Thus, the examples may be viewed from the standpoint of either
paradigm.

2.2 The Cross-Validated Likelihood of the Missing Data. As a general
strategy, we would like to estimate a firing rate with a bandwidth parameter
derived from the underlying temporal structure of the spike train data using
a likelihood-based, rather than adhoc, cost function. A well-known method
for fitting model parameters is the maximum likelihood (ML) approach, in
which parameter values are chosen such that they maximize the likelihood
of the data given the model estimate. However, ML-based bandwidth esti-
mation procedures for firing rate will tend to select small bandwidths; they
describe the data well but do not generalize to future data.

In order to prevent overfitting, we borrow from the nonparametric re-
gression (Wong, 1983; Picard & Cook, 1984; Silverman, 1984; Racine, 1993;
Walk, 2002; Leung, 2005) and density estimation literature (Hall, Racine, &
Li, 2004; Duong & Hazelton, 2005) and use cross-validation techniques to
select parameters for a given smoothing procedure. Cross-validation (Efron
& Gong, 1983), often used in neuroscience for model parameter selection
(Harris et al., 2003), is a statistical procedure to minimize overfitting in
model parameter selection by separating the data used to fit the model
from the data used to evaluate the model. While there are many variations
on cross-validation schemes, the form most often used within neuroscience
separates repeated trials into groups of training sets, on which a model is
fit, and test sets, on which the model is verified.

Cross-validation is more challenging when the data set is a time series,
as it must be performed so as to retain the temporal structure of the data. To
do this, a subset of the data is removed, and an estimate of the model values
at the missing points is calculated from the remaining data. The parameter
value that optimizes a specified error measure between the missing data
and the model estimates is computed. In our case, we select the bandwidth
parameter that maximizes the likelihood of observing the missing data
given the remaining data. We present a general framework for a leave-one-
out cross-validated estimate of firing intensity and then show the illustrative
example of adapting the kernel smoother for use within this framework.

2.2.1 Leave-One-Out Cross-Validation for Spike Train Time-Series Data. To
create a cross-validated estimate of firing rate, we first adapt the concept of
time-series cross-validation to spike train data. Figure 2a shows a schematic
of a cross-validation procedure applied to a hypothetical spike train in
discrete time, with the spike count displayed in each time bin below. The
seventh data point (shown as a question mark) is a missing data point that
is removed as part of the cross-validation procedure. Given the spikes and
this missing data point, we illustrate two hypothetical rate estimates: one
from a smoother with a large bandwidth (see Figure 2a, black curve) and
one from a smoother with a small bandwidth (see Figure 2a, gray curve).
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Figure 2: Schematic of the spike train cross-validation process for kernel
smoothers. (a) A theoretical example of a spike train in discrete time with large-
bandwidth (black curve) and small-bandwidth (gray curve) rate estimates. The
spikes are shown above the discretized spike count, with missing data repre-
sented by the dashed spike over the question mark. (b) A theoretical likelihood
curve (black curve) that displays the likelihood of the rate given the spikes as
a function of bandwidth. The maximum likelihood bandwidth value is marked
with the black dot. Examples of a Hanning kernel function (c) and its notch filter
formulation (d) are shown. Both windows have a period width of 2 seconds.

Since the firing rate is directly proportional to the probability of firing in
a specified time interval, the event that a spike occurs in that bin is more
likely given a large bandwidth, while the event that a spike does not occur
in that bin is more likely under a small bandwidth.
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To capture the firing dynamics of the entire spike train, we perform a
complete leave-one-out cross-validation procedure. At each step, we re-
move the spike data from a single temporal bin, compute a rate estimate
within that bin from the remaining data, and calculate the likelihood of the
missing data point given that rate estimate. The logarithms of the missing
data likelihoods are then summed to find the leave-one-out cross-validated
log likelihood. By combining the cross-validated likelihoods from every
temporal bin, we are able use all of the data to find the bandwidth that
best accounts for the entire spike train and will not overfit to a specific data
set. For example, if the missing data point in the example in the seventh
bin were truly a spike, the large bandwidth rate, which falls slowly toward
0 Hz, would predict the spike well, yet provide a poor prediction of the
nonspike times surrounding it. The small bandwidth rate, which falls
quickly toward 0 Hz, would predict the nonspike times well yet provide a
poor prediction of the missing spike. We therefore want to use all the data
to achieve a balance between underpredicting spikes and overpredicting
nonspikes. For a given spike train, we calculate the complete cross-validated
likelihood over a wide range of bandwidths (see Figure 2b) and choose the
bandwidth that maximizes the cross-validation likelihood.

2.3 A General Likelihood Framework for Firing Rate Estimation. We
define a spike train in discrete time with NT observations as the sequence
of spike counts,

si = �N(ti ,ti+1], (2.2)

where �N(a ,b] is the spike count between times a and b, and

ti = i�t (2.3)

given a fixed time resolution, �t, and an integer i ∈ {1, . . . , NT }.
A feature common to all rate estimation algorithms is that they produce

a rate or intensity function at each point at time, which can be used to
estimate the instantaneous probability of spiking. This rate or intensity
may vary as a function of time, past spiking history, and other covariates
and will depend on the choice of a bandwidth parameter. We notate the
output of the rate estimation algorithm at time ti as λ (ti |Hi , θ ), where Hi is
past spiking history from time 0 to ti and θ is the bandwidth parameter. We
define λ− (ti |Hi , θ ) to be the result of the algorithm when si , the observed
number of spikes in the interval (ti−1, ti ], is unknown.

Using the log likelihood of a general point process (Daley & Vere-Jones,
2003), we can calculate log[Lcv(θ )], the leave-one-out cross-validated log
likelihood of the spike train from the rate or intensity estimate resulting
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from any algorithm,

log [Lcv (θ )] =
NT∑
i=1

si log
[
λ− (ti |Hi , θ ) �t

]
(2.4)

− λ− (ti |Hi , θ ) �t − log [si !] .

We can then compute the maximum likelihood estimate of θ ,

θmax = arg max
θ

log [Lcv (θ )] , (2.5)

which is the bandwidth parameter that maximizes the cross-validated like-
lihood, and therefore best predicts missing spike data.

The general likelihood framework is summarized in this way:

A General Likelihood-Based Bandwidth Selection Procedure for Spike
Trains

1. For each of a broad range of values for bandwidth parameter θ :
a. Calculate the leave-one-out rate estimate, λ− (ti |Hi , θ ), at each time

point
b. Calculate the leave-one-out cross-validated log likelihood using

equation 2.4.
2. Compute θmax, the bandwidth that maximizes the full cross-validated

log likelihood, using equation 2.5.
3. Calculate the full rate, λ (ti |Hi , θmax).

As cross-validation is a method of model selection orthogonal to the
method of rate calculation itself, the framework is algorithm independent
given that a reasonable λ− (ti |Hi , θ ) can be computed. Thus, while automatic
bandwidth estimation algorithms have been developed for several specific
smoothing procedures, this general framework can be broadly applied to
any of the multitude of established methods for firing rate or conditional
intensity estimation.

We next show two illustrative examples of the application of this general
framework to the estimation methods most commonly presented in the
literature. The goal here is not to describe a particular optimal smoother
but rather to show the benefits reaped from this computational strategy,
even when applied to the simplest of rate estimation methods.

2.4 Likelihood-Based Bandwidth Selection for the Time Histogram.
To demonstrate the use of the general framework, we first apply the
likelihood framework to the method for rate estimation most often used
in electrophysiological literature: the time histogram. A full mathematical
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derivation of the time histogram and a reiteration of its associated caveats
can be found in the appendix. The time histogram, or peristimulus time
histogram (PSTH) when time is defined in relation to an event, breaks up
time ranging from 0 to tNT into Kequal and nonoverlapping histogram bins
of size �b = tNt /K , and computes r (t), the mean spike count per temporal
band (defined by equations A.3 and A.4 in the appendix, respectively).

2.4.1 Handling Missing Data. In order to apply the likelihood framework,
we must first adapt the time histogram to allow for missing data. Conceptu-
ally we can achieve a leave-one-out rate estimate for a given histogram bin
by excluding the missing data time segment and its spike count from the
rate computation. This gives us an estimate of the rate within the histogram
bin without using any of the information from within the missing time bin.

Explicitly, r− (tm, K ), the leave-one-out time histogram rate for a band-
width K and missing data at tm, is defined as

r− (tm, K ) = �N(k�t,(k+1)�t] − �N(m�t,(m+1)�t]

�b − �t
, (2.6)

where k is an integer ranging from 0 to K − 1, which denotes the bin
number into which t falls. The numerator �N(k�t,(k+1)�t) − �N(k�t,(k+1)�t) is
the difference of total spike count within the entire histogram bin and the
spike count within the missing data time bin. The denominator is the dif-
ference between the total time of the histogram bin, �b, and the duration
of the time bin, �t.

2.4.2 The Complete Cross-Validated Likelihood. Once the missing data firing
rate estimate is calculated at every temporal bin using equation 2.6 given a
particular bandwidth, we calculate the leave-one-out cross-validated like-
lihood of the spikes given that estimate,

log [Lcv (K )] =
NT∑
i=1

log [L (si , K )]

=
NT∑
i=1

si log
[
r− (ti , K ) �t

] − r− (ti , K ) �t − log [si !], (2.7)

which is simply equation 2.4, where r− is substituted for λ−.
To determine the optimal cross-validated bandwidth, we select a broad

range of bandwidth values and calculate the leave-one-out cross-validated
loglikelihood for each bandwidth. We then choose the bandwidth value
that maximizes equation 2.7, which we call Kmax. To generate the final rate
estimate, we perform a standard time histogram full-time histogram using
equation A.4, where K = Kmax in equation A.3.
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We summarize the entire process as follows:
The Likelihood-Based Bandwidth Estimation Procedure for Spike Trains
Using the Time Histogram

1. If a PSTH is to be computed with data from multiple trials, use the
sum of the spike counts across all trials within a temporal bin as data,
and divide the final rate estimate by the number of trials.

2. For each of a broad range of histogram bandwidths (bin widths) K :
a. Calculate the leave-one-out rate estimate at all time points using

equation 2.6.
b. Calculate the full leave-one-out cross-validated log likelihood us-

ing equation 2.7.
3. Choose the histogram bandwidth Kmax that maximizes the full cross-

validated likelihood, using equation 2.7.
4. Calculate the final rate estimate using a standard time histogram from

equation A.4, with bandwidth K = Kmax in equation A.3.

2.5 Efficient Likelihood-Based Bandwidth Selection for the Kernel
Smoother. The kernel smoother is another simple, commonly used method
for rate estimation. While the kernel smoother does not include certain use-
ful aspects found in other more sophisticated models, such as history de-
pendence or dynamic bandwidth, it is in many ways far superior to the time
histogram. The kernel smoother uses a sliding window for rate estimation,
which produces a smooth estimate without discontinuities and avoids the
arbitrary partitioning pitfalls of the fixed-bin time histogram. The kernel
smother also allows a temporal weighting of the spiking data, whereas the
time histogram weights all spikes within a temporal bin equally. Given the
kernel selected, purely causal filters may be computed. The derivation of
the kernel smoother is described detail in the appendix.

2.5.1 Handling Missing Data. In order to apply the likelihood framework,
we must first adapt the kernel smoother to allow missing data. In a standard
convolution, as defined in equation A.5, all of the temporal bins surrounding
and including the current bin are combined in a weighted average as defined
by the kernel function. If we use a kernel that excludes the current bin
from the weighted average calculation, we can perform a convolution that
incorporates only information from surrounding bins and treats the current
temporal bin as missing data.

We accomplish this by defining a notch kernel w− (t, K ), which is any
kernel function that is a function of time t, has a bandwidth parameter of
valueK , and for which w− (0, K ) = 0. Given a notch kernel w−, we can then
calculate the leave-one-out rate estimate r−, which is defined as

r− (tm, K ) =
NT∑
i=1

w− (tm − ti , K )
ν

si�t, (2.8)
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where tm is the time of the missing data point, NT is the number of discrete
temporal bins in the spike train, and ν is a normalization factor,

ν =
∞∑

i=−∞
w− (ti , K ), (2.9)

which ensures that w−will always integrate to 1.
Herein, the kernel we have chosen is a variant of the Hanning function

(see Figure 2c),

w(t, K ) =
⎧⎨
⎩

0.5
(

1 + cos
(

2π t
K − 1

))
for − K

2
< t ≤ K

2
0 otherwise

, (2.10)

where K is a number that defines the period size. We selected the Hanning
kernel over the more traditional gaussian kernel because in discrete time,
the bandwidth parameter, K , is directly proportional to the number of
samples used in the kernel, and thus easy to interpret, though either kernel
would function comparably well.

The notch kernel form of the Hanning kernel (see Figure 2d) is defined
as

w−(t, K )=
⎧⎨
⎩

0.5
(

1+cos
(

2π t
K −1

))
for − K

2
< t ≤ K

2
, and t �= 0,

0 otherwise

(2.11)

where K is a number that defines the magnitude of the notch ker-
nel bandwidth. This is simply the same equation as equation 2.10, but
with the function taking on a value of 0 at w− (0, K ). The notch kernel
can be calculated likewise for any viable kernel function, such as the
gaussian.

Convolving the spike train with the notch filter is a computationally effi-
cient way of calculating the value of leave-one-out smoother (Leung, 2005)
at every temporal bin in the data set. By using leave-one-out convolution,
we incorporate all the surrounding data in the weighted average while
excluding the current bin, thus adapting the kernel smoother to handle
missing data in the cross-validation procedure. If we perform the leave-
one-out convolution for an entire time-series data set, we get the missing
data rate estimate for every point at every time. This is the first step in the
leave-one-out cross-validation procedure, which we efficiently compute in
a single pass.
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2.5.2 The Complete Cross-Validated Likelihood. Once the missing data fir-
ing rate estimate is calculated at every temporal bin with a notch filter of a
particular bandwidth, we calculate the leave-one-out cross-validated like-
lihood using equation 2.7 as was done with the time histogram, this time
using equation 2.8 for r− (tm, K ). Again, we select a broad range of band-
width values and calculate the leave-one-out cross-validated log likelihood
for each bandwidth. We then choose the bandwidth value that maximizes
equation 2.7, which we call Kmax. To generate the final rate estimate, we
perform a convolution using the full Hanning kernel (see Figure 2a, and
equation 2.10) with a bandwidth equal to Kmax.

We summarize the entire process as follows:

The Likelihood-Based Bandwidth Estimation Procedure for Spike Trains
Using the Kernel Smoother

1. For each of a broad range of kernel bandwidths K :
a. Calculate the leave-one-out rate estimate on the full spike train

using equations 2.8 and 2.11.
b. Calculate the full leave-one-out cross-validated log likelihood

using equation 2.7.
2. Choose the kernel bandwidth Kmax that maximizes the full cross-

validated likelihood using equation 2.7.
3. Calculate the final firing rate estimate using a standard convolution,

equation A.5, and the full kernel, equation 2.10, with Kmax as the
bandwidth parameter.

2.6 Parameter Confidence. To calculate confidence bounds on the band-
width estimates from any method adapted to the framework, we can com-
pute the observed Fisher information, which in this case is the inverse of
the second derivative of the full cross-validated log-likelihood, equation
2.7, as a function of bandwidth. The confidence interval for the bandwidth
parameter is

C I = Kmax ± 2
[
−∂2 log [Lcv (Kmax)]

∂K 2

]− 1
2

. (2.12)

We use this confidence interval in our calculations as a measure of uncer-
tainty in our bandwidth estimate.

2.7 Simulated Spike Train Data. We next demonstrate the ability of the
general likelihood framework to greatly reduce the estimation error of the
kernel smoother relative to ad hoc parameter estimation. Since the firing rate
is not directly observable, we must use spike trains generated from known
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simulated “true rates” to viably assess estimation error. To generate these
known rates, we use spline interpolation to fit curves that pass through
control points that are equally spaced in time and have magnitudes that
vary uniformly from 2 Hz to 110 Hz (e.g., see Figures 3a and 3c, red curves).
By changing the number of control points used in the interpolation, the
bandwidth of the true rates can be adjusted, which produces rates with a
wide range of bandwidths. We tested the ability of the cross-validated kernel
smoother to estimate firing rate from spike trains generated by simulating
an inhomogeneous Poisson process based on the true rate rtrue . To do this,
we generated a spike count at each discrete time bin by simulating a Poisson
random variable at a time resolution �t = 33.3 ms with a rate parameter of

λ (t) = rtrue (t) (2.13)

given the true rate curve rtrue .

2.8 Simulation Study. To verify the consistent accuracy of the cross-
validated kernel smoother, we performed a large-scale simulation study
using many spike trains generated from simulated random spline rates
with a wide range of bandwidths. We created a set of known true rate
random spline curves with 5, 10, 20, 30, or 50 possible control points. For
each number of control points, we generated 200 curves with control point
magnitudes ranging uniformly from 2 Hz to 110 Hz, resulting in 1000 total
simulated rates. From each of these 1000 rate curves, spike trains were
generated using the true rate and equation 2.13. From these spike trains, we
then reestimated the true rate by using the cross-validated kernel smoother,
as well as by using many different Hanning kernel smoothers with a broad
range of kernel widths.

In order to evaluate our estimated rates, we then calculated the mean-
squared error (MSE) between each of the cross-validated smoother esti-
mates and the corresponding true rates. To illustrate how estimation error
changes as a function of bandwidth, we calculated the mean MSE for each
set of rates generated from a given number of control points. We computed
confidence intervals about the mean MSE using a nonparametric bootstrap
to build a distribution of the mean statistic at each control point. This was
done by sampling with replacement from the observed MSEs many times
and calculating the mean at each iteration. From these estimates of the
mean statistic, we took the 2.5th and 97.5th percentiles of the computed
distribution to serve as confidence intervals about the mean MSE.

3 Results

3.1 Rate Reconstruction. Figures 3a to 3d shows the output of the
cross-validated kernel smoother for two spike trains generated from two
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Figure 3: The cross-validated kernel smoother applied to simulated and exper-
imental data. (a, c) The rate estimates for the cross-validated kernel smoother
(black curves) from single spike trains (not shown) generated from a true
rate (thick light gray curves). For comparison, estimates from Hanning ker-
nel smoothers with widths 250 ms (a, dark gray curve) and 1510 ms (c, dark
gray curve) are shown. (e, g) The rate estimates for the cross-validated kernel
smoother (black curves) for spike trains from two neurons in the rat MEC during
single trials of a T-maze spatial alternation task. (b, d, f, h) The cross-validation
likelihood against the notch kernel width, along with the maximum likelihood
values (gray dots) with 95% confidence (light gray regions) as calculated by the
observed Fisher information matrix.
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simulated true rates with differing bandwidths. Figure 3a shows a large
bandwidth rate generated using seven control points. The true firing rate
used to generate the spikes is shown as the thick, light gray curve. Using
spikes generated from this true firing rate, we calculated the estimates us-
ing the cross-validated kernel (black curve), as well as a Hanning kernel
smoother with a fixed width of 250 ms (dark gray curve) for compari-
son. Figure 3b shows the leave-one-out cross-validated likelihood plotted
against the Hanning notch kernel width in milliseconds. The maximum
likelihood estimate of kernel width was calculated to be 2090 ms (gray
dot) with a confidence interval (light gray region) ranging from 1690 ms
to 2490 ms, as determined by equation 2.12. The cross-validated estimate
accurately reproduces the smooth bimodal structure of the true rate and has
a root-mean-squared error (RMSE) of 10.89 Hz. In comparison, the kernel
smoother with an overly small bandwidth produces a rate with a much
shorter time course of change than the true rate and has an RMSE of 28.20
Hz.

Figure 3c shows a small bandwidth rate generated using 50 control
points. Using spikes generated from this true firing rate, we calculated
the estimates using the cross-validated kernel (black curve), as well as a
Hanning kernel smoother with a fixed width of 1500 ms (dark gray curve)
for comparison.

Figure 3d shows the leave-one-out cross-validated likelihood plotted
against the Hanning notch kernel width. The maximum likelihood esti-
mate of kernel width was calculated to be 350 ms (gray dot) with a tight
confidence interval (light gray region) ranging from 310 ms to 390 ms, as
determined by equation 2.12. The cross-validated estimate tracks the over-
all structure of the true rates, capturing many of the numerous peaks. The
RMSE of the cross-validated kernel smoother is 23.55 Hz. In comparison,
the kernel smoother with an overly large bandwidth produces a rate with
a much longer time course of change than the true rate and tracks only the
general trend of the data. As a result, the large bandwidth kernel smoother
has an RMSE of 36.62 Hz.

In both cases, the cross-validated kernel smoother accurately captures
the bandwidth of the true process from the single trial of spikes. The ability
of cross-validated kernel smoother to estimate the bandwidth enables us to
have an appropriate data-based representation of firing rate, regardless of
the underlying time course of change.

3.2 Simulation Study of Cross-Validated Kernel Smoother Perfor-
mance. The results of our simulation study are shown in Figure 4. Figure 4a
illustrates how the error of rate estimates change with respect to the
bandwidth of the true rate. The mean MSE is plotted against the num-
ber of control points used in generating the spikes. The mean MSE (dots)
and its bootstrapped 95% confidence (shaded regions) are shown for cross-
validated kernel smoother and selected Hanning smoothers with fixed



2554 M. Prerau and U. Eden

Figure 4: Simulation study results for cross-validated kernel smoother perfor-
mance. In (a) the normalized mean MSE (dots) and 95% bootstrapped confidence
(shaded regions) are shown for the cross-validated kernel smoother (black), as
well as for Hanning kernel smoothers with small (17 bin, magenta), medium
(31 bin, green), and large (51 bin, blue) bandwidths. (b) The mean MSE (curves)
and 95% bootstrapped confidence (shaded regions) for the cross-validated ker-
nel smoother (black) and the small Hanning kernel smoother (red) plotted
against the maximum firing rate of true rates used to generate the simulated
spike trains.

bandwidths. In order to easily compare the relative performance of the
cross-validated kernel smoother to the different-sized Hanning kernel
smoothers, all values were normalized by the mean MSE of the cross-
validated smoother at each number of control points. When the bandwidth
of the kernel is set to a fixed value, the mean MSE of the resulting convo-
lution performs poorly when the kernel bandwidth is smaller than the rate
bandwidth, gradually improves until the bandwidth of the rate is equal
to that of the cross-validated smoother, and then increases in error when
the kernel bandwidth becomes larger than the rate bandwidth. This is evi-
dent in the selected Hanning kernels with bandwidths of 17 bins (567 ms,
magenta), 31 bins (1033 ms, green), and 51 bins (1700 ms, blue) (odd bin
sizes ensure that the kernel convolution result is the same size as the origi-
nal data set, without the use of zero padding). These bandwidth selections
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were chosen to show the range changing accuracy across the given con-
trol points used in the simulation. The large bandwidth (1700 ms) kernel
smoother performed well for spike trains with a slow time course of change,
performing maximally at 10 control points, with a marked increase in MSE
as the rate bandwidth increased. The medium (1033 ms) bandwidth Han-
ning kernel smoother showed the full extent of the performance curve over
our range of control points, with decreasing MSE from 5 to 10 control points,
increasing error from 30 to 50 control points, and the best performance at
20 control points. The small bandwidth (567 ms) Hanning kernel smoother
showed decreasing MSE from 5 to 20 control points, increasing error from
30 to 50 control points, and the best performance at 30 control points. These
curves are in contrast to the MSE of the cross-validated kernel smoother
(black), which performs consistently equal to or better than the fixed kernel
smoothers regardless of the bandwidth of the true rate.

To analyze the change in performance based on the sparseness of data,
we calculated the mean MSE and bootstrapped 95% confidence intervals
for the cross-validated kernel smoother as well as Hanning smoothers,
which we plotted against the maximum firing rate of the true rate from
which the spikes were simulated. In order to easily compare the relative
performance of the cross-validated kernel smoother to the different sized
Hanning kernel smoothers, all values were normalized by its mean MSE
across the maximum firing rate. For any Hanning kernel width, the error
in estimate increased relative to the cross-validated kernel smoother as the
maximum firing rate decreased. We performed this analysis using kernels
with numerous different bandwidths, and the overall structure of the curve
of the MSE as a function of number of spikes looked virtually identical re-
gardless of the bandwidth used, changing only in scale. Figure 4b compares
the simulation results for the cross-validated kernel smoother (black) and a
Hanning kernel smoother of width 567 ms (red). This result indicates that
a proper choice of bandwidth matters the most for neurons with low fir-
ing rates. Thus, the cross-validated kernel smoother is potentially the most
useful for sparsely firing neurons, such as those found in hippocampal and
parahippocampal regions.

3.3 Analysis of Spike Trains from Experimental Data. To illustrate
our method in the context of real experimental data, we applied the
cross-validated kernel smoother to spike trains from Lipton, White, and
Eichenbaum (2007), in which tetrode recordings of neural activity from the
hippocampus and entorhinal cortex were recorded from rats performing
a spatial alternation task on a T-maze. These neurons are known to fire
sparsely and would thus benefit from the cross-validation bandwidth esti-
mation procedure, given the results of the second simulation. Figures 3e to
3h shows the output of the cross-validated kernel smoother for spike trains
from two neurons in the rat MEC during single trials of a spatial alternation
task. Both neurons are from the same animal. Figure 3e shows the firing
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rate estimate from the cross-validated kernel (black curve) for the first spike
train, and Figure 3f shows the leave-one-out cross-validated likelihood plot-
ted against the kernel width in milliseconds. The maximum likelihood es-
timate of the kernel width was calculated to be 5278 ms (see Figure 3f, red
dot) with a confidence interval (see Figure 3f, green region) ranging from
4284 ms to 6271 ms. The large bandwidth structure of the estimate implies
that this neuron has a relatively slow time course of rate change during this
trial.

Figure 3g shows the firing rate estimate from the cross-validated kernel
(black curve) for the other spike train, and Figure 3h shows the leave-one-
out cross-validated likelihood plotted against the Hanning notch kernel
width in milliseconds. The maximum likelihood estimate of kernel width
was calculated to be 1272 ms (see Figure 3h, red dot) with a confidence
interval (see Figure 3h, green region) ranging from 1103 ms to 1440 ms.
The small bandwidth multimodal structure of the estimate implies that
this neuron has a relatively fast time course of rate change during this
trial.

3.4 Analysis of Firing Rate Correlation to Behavioral Data for a Sim-
ulated Motor Trajectory Task. To illustrate how assumptions about the
bandwidth of a firing rate estimate translate to higher-level conclusions,
we examined a simulated motor neuron in the primary motor cortex of a
monkey during an arm trajectory task. To generate the arm trajectory, we
simulated the x and y components of the arm velocity using two indepen-
dent AR(100) models with parameters fit from real primate experimental
data (Eden, Truccolo, Fellows, Donoghue, & Brown, 2004) and then calcu-
lated the magnitude, v (t) in cm/s, and the angle, φ (t) in degrees, of the
arm velocity. We simulated a spike train from a cosine tuning model of
motor neuron activity (Moran & Schwartz, 1999) where the firing rate r (t)
is defined as

r (t) = max (α + β1v (t) cos [φ (t)] + β2v (t) sin [φ (t)] , 0) , (3.1)

where, in this case, α = 25, β1 = 3, β2 = 3. The trajectory was simulated
for 5 s with a �t of 4 ms, and a spike train was generated from r (t) (see
Figure 5a, gray curve) using an inhomogeneous Poisson process model.

From the spike train, we calculated the cross-validated kernel smoother
estimate of firing rate (see Figure 5a, black curve), which followed the
general trend of r (t) over time. To show the effects of bandwidth on corre-
lation analyses, we calculated the Hanning kernel smoother and the time
histogram firing rate estimates for all possible bandwidth sizes that were
multiples of �t from 4 ms to 5000 ms. We computed the least-squares linear
regression between the movement trajectory and estimated firing rate for
each bandwidth value and plotted the resulting R2 value against bandwidth
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Figure 5: A correlation analysis of simulated data from the motor cortex of a
monkey during a motor trajectory task using a cosine tuning model of neural ac-
tivity with parameters fit from actual experimental data. (a) The true rate given
by the model (light gray curve) is plotted against time histogram (dark gray
curve) and cross-validated kernel smoother (black curve) estimates of firing
rate, calculated from spikes generated from the true rate using an inhomo-
geneous Poisson process. (b) The values of R2 for a Hanning kernel smoother
(black curve) and time histogram methods (dark gray curve) versus bandwidth,
which was calculated using least-squares linear regression with the generating
model. The kernel and bin widths that maximize R2 for the Hanning kernel
smoother (b, dashed line) and the time histogram (b, dotted line) are shown.
Also displayed are the computed bandwidths and corresponding R2 values for
the cross-validated kernel smoother (b, black dot) and time histogram (b, gray
dot), along with their confidence bounds (light gray region, thin dark gray re-
gion, respectively). Additionally, the corresponding R2 values for the 800 ms (b,
white square) and 250 ms (b, white diamond) time histograms, as well as 1500
ms (b, gray square) and 100 ms (b, gray diamond) Hanning kernel smoothers
are shown.

for both the Hanning kernel smoother and the time histogram. Since we
know that the spikes are truly correlated with the movement data, we expect
to find high correlation for the bandwidths that accurately capture the data
structure. The R2 curve for the Hanning kernel smoothers (see Figure 5b,
black curve) is smooth and rises sharply from a kernel bandwidth of 0 to
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300 ms before declining slowly after a maximum R2 of 0.83 for a kernel
width of 972 ms (see Figure 5b dashed line). In contrast, the R2 curve for the
histogram-based rate estimate (see Figure 5b, gray curve) fluctuates rapidly
and rises sharply from 0 ms to its maximum R2 of 0.77135 for a bin width
of 188 ms. The R2 curve then stays at a noisy plateau from 150 ms to 750
ms, before it drops drastically from 750 ms to 1000 ms and remains low
and noisy for larger bin sizes. These results indicate that the use of a kernel
smoother offers a higher degree of correlation as well as a broader margin of
error in bandwidth selection than does the time histogram. However, even
slight changes in bandwidth can result in conflicting conclusions about the
correlation of the spiking activity to the behavioral data. For the time his-
togram, a change in bandwidth of only 250 ms, from 750 ms to 1000 ms,
changes the R2 from about 0.7 to an R2 of about 0.01. For both the time his-
togram and the kernel smoother, the R2 plummets from about 0.75 toward
0 for bandwidths of 200 ms and below. This is particularly troublesome, as
often the intuition is that very small bandwidths are safe choices because
they will quick fluctuations in firing variation as well as the macroscopic
structure of the firing rate. In actuality, these small bandwidths can inject
variability into the calculations and result in incorrect conclusions about the
data. The structure of these results persisted across the multiple iterations
of this simulation and is not specific to this spike train.

These results connect directly with the rates shown in Figures 1a to
1d, as the spike train used in those examples was the same one used in
this iteration of the simulation (see Figure 5a). The smaller-bandwidth 250
ms time histogram (see Figure 1a and Figure 5b, white square) and the
larger-bandwidth 1500 ms kernel smoother (see Figure 1d and Figure 5b,
gray square) had R2 values of 0.71 and 0.81, respectively, which indicate
a strong correlation with the arm trajectory. The larger-bandwidth 800 ms
time histogram (see Figure 1b and Figure 5b, white diamond) and the
smaller-bandwidth 100 ms kernel smoother (see Figure 1c and Figure 5b,
gray diamond) had R2 values of 0.38 and 0.49, respectively, which indicate a
weak correlation with the arm trajectory. Thus, while all four estimates may
appear to be reasonable representations of the spiking data, the differences
in bandwidth can result in varying and opposite conclusions about the data.
If one were to choose the bandwidths and methods for the rates in Figures
1a or 1d, the regression analysis would conclude that the neural spiking
activity is strongly related to the motion of the primate’s arm. If, on the
other hand, one were to choose the bandwidths and methods for the rates
in Figures 1b or 1c, the regression analysis would conclude that the neural
spiking activity is unrelated to the motion of the primate’s arm. It should
also be noted that while in this case, inaccurate bandwidth estimates led to
erroneously decreased correlation between spiking and the covariate, it is
also possible that inaccurate bandwidths biased toward the timescale of the
presupposed correlate may find spurious increased correlation between
spiking and the covariate. Therefore, a purely subjective determination
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of bandwidth, even if many parameter values are explored, can result in
widely misleading conclusions, even if the resultant rate estimates do not
look unreasonable.

We then applied the cross-validated kernel smoother to the same simu-
lated data. The kernel width chosen by the cross-validated kernel smoother
was 940 ms (see Figure 5b, black dot) with confidence bounds on the kernel
width of ±108 ms (see Figure 5b, light gray region). The chosen cross-
validated kernel of 940 ms yielded an R2 of 0.83. This value is virtually
identical to the maximum possible correlation, with the maximum corre-
lation falling well within the confidence interval. The cross-validated time
histogram selected a bandwidth of 752 ms (see Figure 5b, gray dot) with a
confidence of 6 ms (see Figure 5b, thin gray region), an R2 of 0.59, which falls
before the major drop in R2 as bandwidth increases. These results suggest
that the ability of a cross-validated rate estimation method to accurately
determine the timescale for changes in firing rate can directly translate into
high degrees of correlation for those signals with which the neuron is actu-
ally correlated. Assuming the neuron’s rate of change in activity is directly
correlated to the driving stimulus, an accurate estimate of bandwidth can be
highly useful in determining to which of many possible signals the neuron
may be related.

4 Discussion

The study of electrophysiological data often necessitates the smoothing
of neural spiking data in order to produce an estimate of neural firing
that is continuous in time. Herein, we develop an algorithm-independent,
general framework for a likelihood-based approach to parameter selection
in firing rate or conditional intensity models using leave-one-out cross-
validation and maximum likelihood. The basis for this framework is that
all spike-smoothing algorithms produce a rate or intensity function at each
point at time, which provides an estimate of the instantaneous probability
of spiking. The estimation of this probability allows us to calculate the
likelihood of the spikes given the firing rate and intensity, which can act as
a natural cost function for the smoother when used in conjunction with a
leave-one-out cross-validation procedure. We show how this procedure can
be used to select the model parameters that best predict missing data. This
framework thus removes the need for ad hoc parameter selection in many
common rate estimation procedures without having to develop specialized
new techniques for each method.

As a simple, illustrative example, we applied the general framework to
the time histogram and kernel smoother, the most common methods of
rate estimation in practice within the electrophysiological literature. Both
methods have a single bandwidth parameter, which implicitly imposes spe-
cific assumptions about the time course over which the neuron can change
its activity onto the rate estimates. We demonstrated that the application
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of the framework to the kernel smoother yields a vast reduction in estima-
tion error to an ad hoc selection of bandwidth and that the benefits are the
greatest when the firing rate is low. In our correlation analysis, we demon-
strated that in practice, the use of such a procedure can provide a way of
determining the correlation between a smoothed spike train and external
correlates that is not reliant on subjective choices of bandwidth, which may
result in incorrect conclusions about the relationship between the spiking
and the correlates. Thus, the general framework can provide substantial
improvements to even simple methods of rate estimation and can create
an internally consistent approach for identifying the timescale on which
neurons transmit information.

An accurate characterization of bandwidth can provide insight into neu-
ronal functionality, as well as suggest plausible signals with which neural
activity may be associated, which vary on the same timescale. This charac-
terization is especially useful when the function of the neuron is not well
known or when it is variable between experimental contexts. Firing rate
variability itself may be thought of as an additional feature of neural activ-
ity to be collected, and it can be used in much the same way as any other
neural measurement. A parameter-based metric of the time course of rate
change can be used to classify and differentiate neurons, and analyses can
be performed attempting to link changes in bandwidth to context, behavior,
or other correlates. Furthermore, an analysis of bandwidth in populations
can show the variety of timescales on which an ensemble may operate
and provide information regarding network functionality and oscillatory
behavior and further our understanding of the neural code.

There are many obvious limitations of the cross-validated kernel
smoother, shown herein as an example of an application of the general
framework. The cross-validated kernel smoother is based on the assump-
tion that spiking is an inhomogeneous Poisson process with a constant
bandwidth. It has been shown, however, that in actual neural systems, neu-
ral spiking is often non-Poisson (Pfeiffer & Kiang, 1965; Tuckwell, 1988;
Koch & Segev, 1998; Shadlen & Newsome, 1998; Brown, Kass, & Mitra,
2004; Truccolo et al., 2005) and potentially nonuniform in its bandwidth.
The cross-validated kernel smoother is clearly not optimal, yet there exist
specific circumstances in which the method can be beneficial. Since the esti-
mation of bandwidth in the cross-validated kernel smoother is completely
data driven, this method requires only a single trial of spike train data to cal-
culate an estimate of rate. Therefore, no parametric modeling assumptions,
prior distributions of initial conditions, or the existence of any external
stimuli or correlates are necessary to calculate firing rate. The estimated
bandwidth from our method can suggest potential correlated stimuli and
thus help motivate the creation of parametric models, which can be applied
to the methodologies. An additional benefit to using the cross-validated
kernel smoother is that it is extremely efficient and easy to compute. At its
core, the cross-validated kernel smoother is simply a convolution of spiking
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data with a normalized zero-centered kernel. Thus, the entire algorithm can
be programmed as a single iterative loop in relatively few lines of code.

A useful feature of the likelihood framework is that it is orthogonal to
the actual smoothing method on which it is applied, as it is primarily a
means for model and parameter selection (Cunningham et al., 2009), and
thus estimation algorithm independent. In the quest for an optimal rate esti-
mation algorithm, further applications of the general likelihood framework
to firing rate estimation can therefore take advantage of more sophisticated
rate estimation methods that are able to incorporate aspects of spike timing
such as refractory period and history dependence. One possible way to in-
corporate these timing features into the methodology is to adapt state-space
methodologies (Brown et al., 1998; Brown, Nguyen, Frank, Wilson, & Solo,
2001; Eden et al., 2004; Czanner et al., 2008; Kulkarni & Paninski, 2008) to
facilitate the cross-validation procedure, which we plan as a future investi-
gation. We can also add the ability to capture a time-dependent bandwidth.
A state-space modeling approach may also be helpful in adding a dynamic
estimation of bandwidth. Using the current methods, it is possible to get a
rudimentary estimate of systems with a changing bandwidth over time by
using the cross-validated kernel smoother at several discrete temporal in-
tervals, such as on a trial-by-trial basis. A temporal analysis of bandwidth,
even at the trial-by-trial level, can provide a measure of neural plasticity,
illustrating change in neural function over time.

In summary, the firing rate is calculated at the outset of the data anal-
ysis for the preponderance of electrophysiological research and is used as
the basis for all subsequent computations and conclusions. It is therefore
vital that these rates be computed in a principled manner to avoid spuri-
ous conclusions. By applying a general framework based on the spiking
likelihood to any of the preexisting smoothing procedures, we can create
data-oriented internally consistent methods and proceed with higher-level
rate-based computations with an objective and justifiable foundation for
the resultant conclusions.

Appendix: The Time Histogram and the Kernel Smoother

We present an overview of the two most prominently used methods for
the temporal smoothing of spike trains: the time histogram and the kernel
smoother. For each method, we discuss the relationship of bandwidth se-
lection to the time course of change of the rate estimate produced by the
smoothers.

We define a spike train in discrete time with NT observations as the
sequence of spike counts,

si = �N(ti ,ti+1], (A.1)
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where �N(a ,b] is the spike count between times a and b, and,

ti = i�t, (A.2)

given a fixed time resolution, �t.

A.1 The Time Histogram. To calculate a time histogram, time ranging
from 0 to tNT is partitioned into K equal and nonoverlapping bins of size �b,
where

�b = tNt

K
, (A.3)

and K is the parameter that governs the time histogram bandwidth.
We define the time histogram rate estimate, r (t), as

r (t) = �N(k�t,(k+1)�t]

�b
, (A.4)

where k is an integer ranging from 0 to K − 1, which denotes the bin num-
ber into which t falls, such that k�b < t ≤ (k + 1) �b. �N(k�b,(k+1)�b] con-
sequently defines the spike count of the bin into which t falls. Hence, the
value of time histogram rate in each bin is the mean firing rate for that
given bin. When the bounds of the bins are based on spatial bounds as
opposed to temporal bounds, as is often useful in hippocampal place cell
electrophysiology studies (Wood, Dudchenko, Robitsek, & Eichenbaum,
2000; Eichenbaum, 2004; Lipton et al., 2007), the rate calculation is termed
an occupancy normalized histogram.

Time histograms produce discontinuous step function estimates of rate,
which jump at each bin boundary. The bandwidth and placement of these
nonoverlapping bins greatly change the structure and smoothness of the
rate estimate. A small bin size (see Figure 1a) produces a greater fluctuating,
small-bandwidth estimate of rate, whereas a large bin size (see Figure 1b)
produces a slowly changing, large-bandwidth estimate of rate. When there
is a single bin containing all of T , the time histogram converges to the
calculation of the mean firing rate of the entire spike train.

While the time histogram is simple to compute, improperly speci-
fied fixed bin boundaries or inappropriate bandwidth can lead to mis-
leading conclusions about the underlying spiking data (see Figures 1e
and 1f). Though it appears to be possible to construct an appropri-
ate rate estimate for trivial firing examples by fitting parameters by
eye, it can quite difficult to determine accurate bin size for complex
experimental spike trains in which the trends in firing rate are not
obvious.
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A.2 The Kernel Smoother. The kernel smoother is essentially a
weighted moving average. Kernel smoothers avoid the problems associ-
ated with the fixed, nonoverlapping bin boundaries of the time histogram
by using a convolution of a function with the spikes to smooth the data.
This, in effect, creates a sliding window across the data, as opposed to static
bins.

The kernel smoother is defined as the discrete convolution of data, s,
with a function w (t),

r (ti ) =
NT∑
j=1

w
(
ti − tj

)
s j�t. (A.5)

In the kernel smoother, the function w (t) integrates to 1 and is termed
the kernel or, more colloquially, the window function. The kernel acts as a
temporal weighting function for the data, and its structure determines how
past and future data are weighed into the estimate of firing rate at a given
point. Common choices for w (t)are gaussian or Hanning functions, which,
due to their symmetry about 0, integrate equally both past and future local
information. The choice of a gaussian kernel, for example, would create a
smoother that would weigh the information closest to the current data point
the highest, then decrease the importance of the spiking data as it became
increasingly temporally distant. This is in contrast to the time histogram,
which is based on spike count and thus disregards the location of the
spikes within any given bin. In addition to symmetric functions, kernels
can be causal functions, which are functions that are asymmetric about 0.
Causal function kernels are used to integrate only past information into the
convolution. Because kernels weigh the data based on the time relative to
the current temporal bin, kernel smoothers can create rate estimates with
a higher degree of temporal information than time histograms, which is
important in neural systems in which information is contained in spike
timing.

The choice of kernel bandwidth, as with the bin size of the time his-
togram, governs how quickly the rate estimation can change over time.
The bandwidth of kernel smoothers is the temporal extent over which the
kernel incorporates information for a specific temporal bin. For example, if
the kernel is gaussian, the smoother bandwidth is proportional to its stan-
dard deviation. Large kernels (see Figure 1d) combine information over
many contiguous local data points and allow for a slower change in rate
over time than do kernels with small bandwidths (see Figure 1c), result-
ing in potentially large differences in the temporal variations of the rate
estimate. As with the histogram, both oversmoothing and undersmoothing
based on bandwidth selection can result in the loss or misinterpretation of
data.
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