
Sleep Neurophysiological Dynamics
Through the Lens of Multitaper Spectral
Analysis

During sleep, cortical and subcortical structures within the brain engage in

highly structured oscillatory dynamics that can be observed in the electro-

encephalogram (EEG). The ability to accurately describe changes in sleep

state from these oscillations has thus been a major goal of sleep medicine.

While numerous studies over the past 50 years have shown sleep to be a

continuous, multifocal, dynamic process, long-standing clinical practice

categorizes sleep EEG into discrete stages through visual inspection of

30-s epochs. By representing sleep as a coarsely discretized progression of

stages, vital neurophysiological information on the dynamic interplay be-

tween sleep and arousal is lost. However, by using principled time-

frequency spectral analysis methods, the rich dynamics of the sleep EEG

are immediately visible— elegantly depicted and quantified at time scales

ranging from a full night down to individual microevents. In this paper, we

review the neurophysiology of sleep through this lens of dynamic spectral

analysis. We begin by reviewing spectral estimation techniques tradition-

ally used in sleep EEG analysis and introduce multitaper spectral analysis,

a method that makes EEG spectral estimates clearer and more accurate

than traditional approaches. Through the lens of the multitaper spectro-

gram, we review the oscillations and mechanisms underlying the traditional

sleep stages. In doing so, we will demonstrate how multitaper spectral

analysis makes the oscillatory structure of traditional sleep states instanta-

neously visible, closely paralleling the traditional hypnogram, but with a

richness of information that suggests novel insights into the neural mech-

anisms of sleep, as well as novel clinical and research applications.
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The Discretization of Sleep

Since the first recordings of the electroencepha-
logram (EEG), scientists have sought to charac-
terize the complex recurring patterns of neural
activity observed over many hours during sleep.
Primarily, these patterns have been organized
through the process of sleep staging, which
breaks the sleep continuum into a set of discrete
stages using a rule-based categorization of sleep.
These stages are defined through visual inspec-
tion of the sleep EEG and other physiological
waveforms in discrete 30-s epochs, or time win-
dows (FIGURE 1A). The resulting progression of
sleep stages as a function of time is called a

hypnogram (FIGURE 1B), which serves as the
basis for numerous clinical indexes and diagnos-
tic methods.

Over time, the semantic framework by which
sleep has been categorized has evolved. In the
1920s, Hans Berger, inventor of the EEG, first noted
the difference between the sleeping and wake EEG,
and observed the occipital oscillation in the alpha
band (8 –12 Hz) when subjects are awake and at
rest with the eyes closed (9). In the 1930s, Loomis,
Harvey, and Hobart incorporated the sigma band
(12–15 Hz) to help describe the presence of sleep
spindles and proposed a five-stage categorization
of sleep (56). In the 1950s, rapid eye movement
(REM) sleep was discovered by Aserinsky, Dement,
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FIGURE 1. Dynamic spectral analysis of sleep EEG provides a data-rich, high-resolution characterization of neural activity
that is more informative than traditional visual sleep staging
In clinical sleep polysomnography (PSG), EEG waveforms (A) from bilateral frontal (F1, F2), central (C1, C2), and occipital (O1, O2) electrodes are
recorded along with other physiological signals. These signals are then visually scored by technicians who painstakingly categorize sleep into stages
(wake, REM, stage N1–N3) in 30-s epochs, the progression of which is called a hypnogram (B). The multitaper sleep EEG spectrogram (C) takes only
seconds to estimate and reveals patterns of oscillatory dynamics that correspond closely to the rough architecture of the hypnogram. The spectro-
gram shows spectral power (color: cool ¡ warm::low ¡ high power) as a function of time (x-axis) and frequency (y-axis). Furthermore, the multita-
per spectrogram provides a visually striking characterization of the continuum of brain oscillatory activity during sleep, providing information that is
lost in a typical hypnogram. Additionally, the multitaper sleep spectrogram can describe an entire night of sleep in a single visualization, whereas
the EEG waveform trace of the same data (D) provides no detailed information at this scale.
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and Kleitman (4, 30). This paved the way for the
Rechtschaffen and Kales (R&K) system in 1968 (77),
which classified sleep into 30-s epochs of Wake,
REM, and four stages of non-REM (NREM). The
use of 30-s epochs is a procedural relic from the
1930s, when Loomis et al. used a paper tape system
to physically plot the EEG, which automatically cut
the paper into 30-cm strips with the paper moving
at 1 cm/s. Almost 50 years later, R&K scoring is still
the clinical standard for sleep medicine and sleep
research, with minor adjustments such as reducing
NREM to three stages (N1–N3) (42). As such, sleep
staging based on R&K scoring has long served as a
useful tool and an essential foundation for numer-
ous important advances in sleep research and in
clinical sleep medicine.

The use of sleep staging, however, comes with
several substantial drawbacks. In practice, sleep
staging is a time-consuming process, requiring
highly trained sleep technicians to visually catego-
rize hours of waveform data in hundreds of non-
overlapping 30-s epochs. Sleep staging is also
subjective, since the sleep stage within each epoch
is determined by eye based on the technician’s
interpretation of the waveform data and applica-
tion of the staging rules. Consequently, achieving
consistency between scorers is an ongoing con-
cern. Even for sleep in healthy subjects, the aver-
age rate of disagreement between experienced
technicians is !20%, and it can take several years
for a technician to learn to score at this level of
accuracy. In cases of pathological sleep, the inter-
scorer variability increases even further, since the
oscillatory activity does not fall neatly into the
guidelines for one of the pre-defined sleep stages
and thus cannot be adequately characterized by
the hypnogram (36, 37, 83). Sleep staging is there-
fore also inflexible, in that a finite set of stage
definitions is unlikely to support characterization
of the vast heterogeneity in the sleep EEG observed
in both healthy and clinical populations.

From a data analysis standpoint, sleep staging
reduces the information-rich, dynamic, and con-
tinuous process of sleep to an abstract, low-reso-
lution summary of discrete semantic states. Thus,
no matter how sophisticated analysis techniques
and scientific studies become, they will ultimately
be limited if the results must always be referenced
back to the framework of the hypnogram, which
discretizes sleep in time and in state. Sleep staging
discretizes sleep in time by defining the hypno-
gram in non-overlapping 30-s epochs, a length of
time based on historical convention and practical-
ity, rather than a principled analysis of sleep dy-
namics. By placing a temporal constraint upon the
data, sleep staging imposes the assumption that

sleep state cannot change any faster than every 30
s and that the neural activity within each epoch is
not changing. This assumption reduces the ability
to characterize sleep states that are shorter than
30 s, such as sleep microstates. Consequently, the
analysis of transient EEG phenomena is either per-
formed manually—such as periodic limb move-
ments of sleep (PLMS), cortical EEG arousals— or
remains un-quantified in clinical work (e.g., spin-
dles, K-complexes, cyclic alternating pattern). Ob-
jective characterization of these brief events may
prove clinically important to complement the ex-
tensive work on the disruptions associated with
obstructive sleep apnea (OSA) and, perhaps to a
lesser degree, PLMS. Sleep staging also discretizes
sleep in state by restricting sleep states to only five
possibilities (i.e., Wake, REM, NREM stage 1–3),
making it impossible to represent sleep phenom-
ena that vary along a continuum. Overall, the res-
olution in visual sleep staging is limited to the
qualitative features in the EEG that can be practi-
cally discerned and categorized by the human eye.
Attempts to improve staging by defining a greater
number of stages over smaller epochs (39, 80) have
not been adopted in the field, in part because these
enhanced resolution sleep-staging paradigms are
even more laborious than the current standard.
Given the need to analyze brief changes in the EEG
and to characterize a continuum of neural states, it
is therefore important to have an objective, quan-
titative analysis of the EEG that minimizes subjec-
tivity and the need for discretization.

Perhaps most notably, the use of discrete sleep
stages does not match our current understanding of
sleep neurophysiological dynamics. In the half-cen-
tury since R&K scoring was initially proposed, there
have been enormous advances in our knowledge of
the neural mechanisms of sleep. During this time, in
effectively every dimension studied, sleep has been
shown to be a continuous dynamic process (67) in-
volving the activity of numerous cortical and subcor-
tical networks that generate and coordinate neural
activity at multiple frequencies (13). Additionally,
with the recent advent of optogenetic (1) and phar-
macogenetic (81) techniques in rodents, the specific
cell types responsible for the state-dependent control
of cortical oscillations are now being revealed in
greater detail (21, 38, 47, 86). Studies have also shown
that some aspects of neural activity during sleep may
be locally regulated (52, 66, 97), a feature that cannot
be captured by traditional sleep staging. In fact, in-
dividual cortical regions can exhibit features of sleep
in an awake animal (97). The converse may occur in
insomnia (51).

Given this growing body of mechanistic knowl-
edge, it stands to reason that the neural oscillations
observable in human EEG could act as a direct link to
the activity of specific networks and cell types in-
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volved in sleep. Furthermore, deviations in the sleep
EEG could provide fundamental insights into the
pathophysiology underlying sleep-related disorders.
By representing sleep as a coarsely discretized pro-
gression of abstract stages, all of this potentially vital
neurophysiological information is lost. Thus it is es-
sential to strive toward a characterization of sleep
EEG oscillations that faithfully represent the
underlying data, allowing us to apply the wealth of
knowledge we have gained about the continuum of
the underlying neurophysiological mechanisms to
the interpretation of the EEG.

Toward these ends, a powerful tool for analyz-
ing sleep EEG oscillatory structure has been
spectral analysis, a quantitative approach for de-
scribing a waveform signal in terms of its under-
lying oscillations (sinusoids) at different
frequencies. The power spectrum is a function
that represents the strength (power) of those os-
cillations at each frequency. Spectral analysis
also encompasses analysis of time-varying oscil-
lations using the spectrogram, which plots signal
power as a function of time and frequency, mak-
ing it possible to observe how the frequency
structure changes over time (FIGURE 1C). Spec-
trograms are therefore well suited to characterize
the temporal evolution of sleep-related neural
oscillations at different frequencies over the
course of a night of sleep.

While the benefits of spectral analysis were rec-
ognized by sleep researchers as early as the 1980s,
embodied in variants of the spectrogram such as
the color density spectral array (CDSA) (78, 79),
density spectral array (DSA) (72), or hypnospectro-
gram (49, 50), the impact of these early efforts was
constrained in part by the technical limitations of
spectral estimation procedures in common use
during that time. Methods such as the periodo-
gram provide inaccurate (biased) and noisy (vari-
able) estimates of the power spectrum and
spectrogram (75). Spectra estimated with these
techniques can therefore be difficult to interpret,
with noisy and ill-defined spectral peaks that may
obscure important features of sleep EEG dynamics.
The differences in spectrogram quality between
common spectral estimation methods is illustrated
in FIGURE 2.

One common method for improving poor EEG
spectral estimates has been to average spectral
power within canonical frequency bands. For ex-
ample, sleep analyses may report the total power
within delta (0.5– 4 Hz), theta (4 – 8 Hz), alpha
(8 –12 Hz), sigma (12–15 Hz), beta (15–30 Hz), or
gamma ("30 Hz) bands. While averaging across
frequencies reduces the variability in power over
time, it greatly reduces the frequency resolution of
the spectral estimate, producing a low-resolution
estimate that looks like a step function (FIGURE 2,

A AND D, black curves). In contrast, spectral esti-
mation methods like the periodogram yield high-
resolution spectra; however, the estimates are
known to be inaccurate and noisy (FIGURE 2, B
AND D, gray curves). A common approach to re-
ducing variability in these estimates is to average
these spectra across time, as in Welch’s method
(100), or as a function of state, such as sleep stage.
While these time-averaging methods produce
high-resolution, low-variance spectra, the tempo-
ral resolution is greatly reduced due to the addi-
tional smoothing across time. Thus it may appear
that there is no middle ground in the trade-off
between resolution (frequency or temporal) and
variance. Fortunately, there exists a method called
multitaper spectral estimation, which can produce
clear, accurate, high-resolution spectral estimates,
without having to average over frequency or time
(FIGURE 2, C AND D, red curves).

In this paper, we review the neurophysiology of
sleep through the lens of multitaper spectral anal-
ysis. We first present a primer of the basic theoret-
ical and mathematical concepts underlying
traditional spectral estimation and introduce the
multitaper spectrogram (93) as a means of provid-
ing a high-resolution, low-noise, time-frequency
representation of the sleep EEG. We will review the
concepts of estimator bias and variance and ex-
plain how the multitaper method greatly improves
on standard spectral analysis methods (12, 69). As
we will demonstrate, application of the multitaper
method makes clearly visible the relationships be-
tween spectral structure, traditional R&K scoring
rules, and dynamics during a night of sleep that
would be difficult to appreciate otherwise. We will
then illustrate how the multitaper spectrogram can
elegantly characterize the dynamics of the sleep
EEG at full night (hours), ultradian (minutes), and
microevent (seconds) time scales. We will detail
the clear spectral motifs that comprise Wake, REM
sleep, NREM sleep, and the transitions between
them, and describe the connections between oscil-
latory features and the underlying neural mecha-
nisms. Finally, we will discuss the clinical
applications of the multitaper spectrogram using
examples of clinical EEG data.

Through the course of reviewing the time-fre-
quency representation of the sleep EEG, we will
show that the multitaper spectrogram is an in-
formation-rich, multi-scale representation of the
non-stationary spectral dynamics of the sleep
EEG. By using the multitaper spectrogram to
characterize the sleep EEG, we can make visible
and quantify the continuous dynamics of multi-
ple EEG oscillations in a way that the hypnogram
cannot, while still making plain the features used
in the construction of R&K sleep staging
(FIGURE 1).
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By reviewing sleep neurophysiology through this
quantitative lens, we will show that principled
time-frequency approaches can vividly charac-
terize the activity and interaction of different

brain networks during sleep, providing a means
to link the wealth of data acquired during poly-
somnography (PSG) with clinically important
phenotypes and outcomes.
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Methods
Theory and Methods of Spectral
Estimation: Application to EEG Analysis

The goal of spectral estimation, sometimes called
spectral density estimation, is to separate a wave-
form into different component oscillations based
on frequency, just as a prism separates white light
into a rainbow of different wavelengths or an
equalizer in an audio system separates sound into
different frequency bands. In general, spectral es-
timation takes any signal in the time domain
(waveform traces as a function of time) and de-
scribes it in the frequency domain (spectral power
as a function of frequency). The theoretical basis
for spectral estimation is Fourier analysis (33, 46),
which is a method that decomposes a time-do-
main signal into a series of pure sine waves of
different wavelengths. This is particularly useful in
the analysis of EEG data, where the signal repre-
sents the combined activity of multiple networks of
neurons throughout the brain that oscillate at dif-
ferent frequencies.

A stationary periodic signal is one in which the
frequency structure does not change over time. In
stationary signals, it is appropriate to estimate a
power spectrum, which represents the strength
(spectral power) of the signal at different frequencies.
FIGURE 3A, TOP, illustrates how multiple stationary
oscillatory signals can sum into a single aggregate
waveform with an intricate temporal structure. While
the characteristics of the individual sinusoidal com-
ponents are apparent when viewed separately, it is
considerably more difficult to identify the number of
underlying oscillations and their characteristics
when viewing the aggregate waveform. By estimating
the power spectrum of the signal, however, the num-
ber of oscillations, their frequencies, and their ampli-
tudes become evident.

If the oscillatory structure of a signal changes
over time, the signal is said to be time-varying or
non-stationary. If the intention is to characterize
how EEG oscillatory dynamics change in time, es-
timating a single power spectrum for the entire
signal is not appropriate. Instead, a spectrogram
may be estimated for time-varying signals. The
spectrogram describes the power in the signal as a
function of both frequency and time. This is some-

times referred to as looking at the data in the time-
frequency domain. To represent data in the time-
frequency domain, we can construct a spectro-
gram by estimating the power spectrum at
different times using a moving window of data. The
size of the data window is set such that the struc-
ture of the data within that window is approxi-
mately stationary. A spectrogram is visualized with
the x-axis representing time, the y-axis represent-
ing frequency, and the spectral power represented
by the color (cool ¡ warm::low ¡ high power) at
each time-frequency point. FIGURE 3B, TOP, illus-
trates how multiple time-varying oscillatory signals
sum into a single aggregate waveform. By comput-
ing the spectrogram (FIGURE 3B, BOTTOM), the
temporal dynamics of the oscillatory structure be-
come apparent.

In the analysis of EEG data, time-varying spectral
analysis has numerous benefits. FIGURE 3C, TOP,
shows an example of a typical EEG trace during the
early stages of the sleep onset process. While the goal
is to record only EEG data, it is common for other
biological or external signals to “corrupt” a clinical
recording. In this example, the raw signal contains
the desired EEG data, but it also contains ECG activ-
ity as well as 60-Hz electrical noise. This makes the
time-domain signal much harder to read, and thus it
is much more difficult to characterize the underlying
EEG activity. Consequently, this segment of data
would likely be seen as corrupted and be thrown out,
or filtering techniques might be applied to “clean up”
the data. Simple band-pass filtering techniques are
not necessarily an ideal solution, since they can dis-
tort the data and can prove inadequate in removing
a complex signal. By using spectral analysis, however,
no alteration of the data is necessary if the compo-
nents of the waveform reside at different frequencies.
In this case, the spectrogram (FIGURE 3C, BOTTOM)
shows the electrical noise as a strong band at 60 Hz,
and the ECG artifact as a band between 1 and 2 Hz.
The EEG signal appears as an evolving band at 10 Hz,
which in this example represents the eyes closed
alpha oscillation of the subject starting to fall asleep.

Given the high suitability of time-varying spec-
tral analysis for characterizing sleep EEG, why has
it not yet taken hold in the field? Aside from over-
coming the inertia associated with established pro-
cedures and the relative simplicity of classical

FIGURE 2. The multitaper method outperforms conventional spectral estimators, producing high-resolution EEG spectrograms
with significantly reduced bias and variance
We estimated spectrograms from a single occipital EEG channel using periodogram-based frequency band averaging (A), single-taper Hanning win-
dow (B), and multitaper (C) approaches, each using 30-s windows spaced at 5-s intervals. In D, comparisons of spectra from each approach are
shown using 30-s data windows from wake (marker A), NREM stage 2 (marker B), and NREM stage 3 (marker C) states. Below these spectra is a
comparison of spectral power at 10 Hz for each method across time, illustrating differences in the temporal variability of each estimator. Traditional
bands produce a low-resolution spectrogram (A) with coarse step-function spectra, but have low variability in power across time (D; black curves).
Periodogram and single-taper spectrograms (B), while offering a high-frequency resolution, produce noisy spectra with ill-defined peaks and have a
high temporal variability (D; gray curves). In contrast to these traditional approaches, the multitaper spectrogram (C) has a high-frequency resolu-
tion, shows clearly defined smooth oscillation peaks, and has low temporal variability (D; red curves).
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sleep scoring, one reason may lie in the fact that
the prevailing techniques for EEG spectral estima-
tion produce noisy and inaccurate estimates of the
power spectrum, making it difficult to interpret the
resulting spectrogram. In this paper, we propose
the use of multitaper spectral estimation, a method
proven to greatly enhance the clarity of the spectral
estimates over standard methods (12, 69). To
appreciate the motivation for multitaper spectral
estimation, it is important to understand the meth-
ods used in spectral estimation as well as the im-
portant considerations that must be made when
performing spectral estimation on real data. We
illustrate these considerations in FIGURE 4A using
an example of a 10-Hz sinusoid.

Spectral estimation is based on Fourier analysis,
an area of mathematics that provides a theoretical
basis for breaking down a signal into its different
frequency components. This theoretical analysis
assumes that time-domain signals are infinite,
continuous, periodic, and can be decomposed into
pure sinusoids. Thus, given purely sinusoidal data
of infinite length (FIGURE 4Aa), we can use Fourier
analysis to estimate an ideal spectrum, which will
be composed of perfect peaks (vertical lines) at
each of the frequencies contained within the time
domain signal (FIGURE 4Ab). These theoretical as-
sumptions, however, break down when we analyze
real data, which is finite, discrete, aperiodic, and

time-varying. Consequently, spectral analysis of real
data can produce estimates that differ greatly from
the ideal spectrum, producing inaccurate results and
potentially leading to false conclusions. To obtain
more meaningful spectral estimates for real data, we
use different strategies to address the false theoretical
assumptions, each of which comes with special con-
siderations and tradeoffs. For example, EEG data are
never truly stationary, so it is common to analyze
small time segments of an experiment within which
the data properties are assumed to be unchanging.
While stationarity improves as the segments of data
become smaller, our ability to discern oscillations at
closely spaced frequencies decreases. The spectral
resolution is defined as the smallest difference in
frequencies that we can resolve. Thus there is a
tradeoff between data window length and stationar-
ity on one hand and spectral resolution on the other.
In the following sections, we will describe the meth-
ods used for spectral estimation for EEG data and
their pitfalls, followed by techniques for improving
spectral accuracy (bias and resolution) and clarity
(variance).

The Periodogram: “An Extremely Poor
Spectral Estimator”

The simplest and most common method used for
performing spectral estimation on EEG data is
called the periodogram. In practice, the computa-
tion of the periodogram involves an algorithm

Stationary Signal Time-Varying Signal Sleep EEG with Artifacts

FIGURE 3. An overview of spectral estimation for stationary and time-varying signals
Spectral estimation using Fourier analysis assumes that any signal can be represented as the summation of multiple pure sine waves (A–C, top).
For signals with stationary periodic structure (A), we can compute a single power spectrum (A, bottom), which represents strength of the signal at
different frequencies. If the oscillatory structure of a signal is time-varying (B), we can compute a spectrogram (B, bottom) that tracks changes in
the power spectrum over time. In practice, waveform EEG waveform data can be “corrupted” by other signals such as ECG and 60-Hz electrical
noise (C, top), and may be discarded as an artifact. However, since these different signals occur at different frequencies, spectral analysis allows
us to retain the data, viewing each signal independently in the time-frequency domain (C, bottom).
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FIGURE 4. Multitaper spectral analysis reduces bias and variance in spectral estimation
A: an illustration of periodogram bias and the effects of tapering, using a 10-Hz sinusoid as an example. In theory, infinite data
(a) yields a theoretical ideal spectrum with widthless peaks at each frequency (b). In practice, the periodogram of finite data
(d) is an inaccurate (biased) and noisy (variable) spectral estimator (e), with a multi-peaked structure caused by sharp disconti-
nuities imposed by finite data (c). Tapering reduces bias by taking the product of the data and a “taper” function (f) that
smooths the discontinuities at the data ends (g). In doing so, tapering reduces bias by lowering the power in the side lobes of
the spectrum (h). B: a schematic of multitaper spectral estimation, which works by averaging multiple single-taper spectra that
are computed using a special set of orthogonal functions. C: a comparison of spectral estimates for a simulated noisy EEG
spectral peak. The multitaper spectrum shows a smooth peak with greatly reduced noise compared with periodogram and
single-taper (Hanning window) estimates.
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called the fast Fourier transform (FFT), which is an
efficient implementation of the Fourier transform
for data in discrete time. Unfortunately, the peri-
odogram has several suboptimal properties that
cause major problems in spectral estimation. In
fact, in his textbook Spectral Analysis and Time
Series (75), Priestly calls the periodogram “ ! ! ! an
extremely poor (if not a useless) estimate of the
spectral density function.” However, while rarely
appearing in any state-of the-art signal processing
application, the periodogram (often incorrectly re-
ferred to as the “FFT”) is used widely and without
reservation within the EEG literature.

What makes the periodogram such a poor esti-
mator? When we compute the periodogram for a
pure sinusoid in discrete time, instead of the single
peak of the ideal spectrum, the periodogram esti-
mate looks quite different. The resulting periodo-
gram spectral estimate (FIGURE 4Ae) is comprised
of a large rounded peak at the oscillation fre-
quency, called the main lobe, flanked on both sides
by a series of narrower peaks of decreasing power,
called the side lobes. As we will soon see, the
discrepancies between of the periodogram and the
ideal spectrum can cause major problems for EEG
data analysis, and must be dealt with effectively to
achieve accurate results.

Why does the periodogram spectrum differ from
the ideal spectrum? An intuitive way of conceptu-
alizing this phenomenon is to think of any finite
data series (FIGURE 4Ad) as the product of infinite
data (FIGURE 4Aa) and a rectangular or boxcar
window (FIGURE 4Ac), with a value of 1 for the
duration of the data and 0 everywhere else. Con-
sequently, the periodogram of any finite data is the
combination (convolution) of the ideal data spec-
trum with the spectrum of the rectangular window,
which is a multipeaked function with a main lobe
and side lobes. The periodogram of a single, finite
sinusoid is the rectangular window spectrum cen-
tered at the main oscillation frequency. General-
ized to all finite data, the periodogram will be the
rectangular window spectrum replicated at each of
the peaks in the ideal data spectrum, scaled by the
amplitude of each peak (69).

How do these differences between the periodo-
gram and the ideal spectrum affect the data anal-
ysis? The presence of side and main lobe power
means that the periodogram of finite data is a
biased estimator of the spectrum; that is, the esti-
mated periodogram spectrum for real data will dif-
fer from the ideal (expected) spectrogram,
especially in cases where the data length is small.
The side and main lobes in the periodogram allow
noise at a given frequency to “leak” into the esti-
mate at other frequencies, distorting the true spec-
tral content of the data. This spectral leakage, as it
is called, reduces the accuracy of the estimate and

makes it more difficult to clearly distinguish peaks
in the spectrum, especially in noisy data such as
EEG.

The side and main lobes contribute to the peri-
odogram bias in different ways. The side lobes
introduce a broadband bias, which means noise
across a broad range or band of frequencies is
incorporated into the estimate. In our 10-Hz exam-
ple, the ideal spectrum only has power at the cen-
tral oscillation frequency. In contrast, the
periodogram has side lobes that stretch out over all
frequencies, falsely indicating the presence of
broadband power. The power, which should be
concentrated at a single frequency, is redistributed
by the periodogram to frequencies where it does
not belong. This broadband bias can be particu-
larly problematic when data are noisy or have mul-
tiple closely spaced frequency peaks. In such cases,
the side lobes in a periodogram act like transmit-
ters, redistributing power from noise or multiple
oscillations to unrelated frequencies. Thus, with-
out taking measures to improve bias, an EEG peri-
odogram can be easily corrupted by background
noise, artifacts, and signals at frequencies unre-
lated to the oscillations being studied.

The main lobe of the periodogram is a source of
narrowband bias, since it blurs all the frequencies
within the small range of its bandwidth. This
means that, if there are two oscillations that are
separated by a frequency less than the width of the
main lobe, they will be erroneously perceived as
one oscillation. In the example of the 10-Hz sinu-
soid, the ideal peak has no width, yet the periodo-
gram main lobe is a peak with an !0.2-Hz
bandwidth. The width of the main lobe therefore
determines the spectral resolution of the estimated
spectrum, which is the smallest difference in fre-
quencies that can be distinguished by the spectral
estimate. The spectral resolution also determines
the smoothness of the estimate across frequen-
cies—a coarser spectral resolution corresponds to
a smoother spectral estimate, and vice versa. In
practice, it is therefore important to select a spec-
tral resolution that is less than the bandwidth of
the oscillations that are to be analyzed in the data.
We will later describe how to explicitly define the
spectral resolution based on underlying assump-
tions about the oscillatory properties of the data.

The Single-Taper Spectrogram: Reducing
Estimator Bias

Given the strong bias, the periodogram is
an exceptionally inaccurate spectral estimation
method. Fortunately, there are ways to greatly re-
duce periodogram bias. The most common
method for improving periodogram bias is to apply
a function called a taper or window function to the
finite data before performing spectral estimation.
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The result of this process can be called a single-
taper spectrum. We recall that main and side lobes
of the periodogram for finite data arise due to the
sharp changes in the rectangular window at the
start and end of the data. If we wish to reduce
the bias caused by the side lobes, we must smooth
out the abruptness of these transitions. By taking
the product of the raw data and a taper function
that has gradual transitions between 0 and 1
(FIGURE 4Af), the processed data (FIGURE 4Ag)
becomes tapered at both ends (hence the name),
decreasing the magnitude of the discontinuities. As
a result, the power in the side lobes of the single-
taper spectrum (FIGURE 4Ah) is greatly reduced
compared with the periodogram (FIGURE 4Ae),
and the difference in power between the main lobe
and the highest of the side lobes is increased. This
means that there will be less power from surround-
ing frequencies leaking into the spectral estimate,
and thus the estimate will be less biased.

Another way to think about this process is that,
by using a taper, the sharp rectangular window of
the periodogram is effectively replaced by a
smoother function with better spectral proper-
ties. In practice, many different types of func-
tions can be used as tapers in computing the
single-taper spectrogram. Typical tapers used in-
clude Hanning, Hamming, Blackman, Gaussian
(often referred to as a Gabor transform), and
Welch functions, each of which is designed to
optimize different qualities of the spectrum for
specific applications. When we use a Hanning
window, a commonly used taper, in our 10-Hz
example, the differences between the periodo-
gram and single taper spectral estimates are
clearly visible. Compared with the periodogram
(FIGURE 4Ae), the power in the side lobes of the
single-taper spectrum (FIGURE 4Ah) is greatly
decreased, and the rate at which the power de-
creases at frequencies away from the peak is
much greater. Additionally, the difference in
power between the main lobe and the highest
side lobes is increased. Consequently, the single-
taper spectrum has far smaller total and relative
contributions from off-peak frequencies, and
thus will have significantly reduced broadband
bias compared with the periodogram. Therefore,
when the single-taper spectrogram is used with
EEG data, we will be able to more accurately
estimate oscillatory peaks than with a
periodogram.

We also note that the width of the main lobe is
slightly larger in the single-taper spectrogram than
in the periodogram, which reduces the spectral
resolution. In practice, there is a tradeoff between
broadband (side lobe) and narrowband (main
lobe) bias, which can be controlled by the choice of
taper function. In any case, so long as the spectral

resolution is less than the bandwidth of the oscil-
lations that are to be analyzed, the increase in the
main lobe width should not cause any significant
problems in the analysis.

The Multitaper Spectrum: Simultaneously
Reducing Estimator Bias and Variance

Another major issue in spectral estimation is the
concept of the variance of the spectral estimate,
which characterizes the uncertainty in the estimate
across frequencies. The periodogram produces es-
timates with high variance across all frequencies.
This is illustrated in our example, where the ideal
spectrum (FIGURE 4Ab) has a single vertical peak,
whereas the periodogram has visible and highly
variable side lobes (FIGURE 4Ae) around each
peak. Thus the periodogram has a much higher
variance than the ideal spectrogram. As the length
of the data set length becomes larger, the variance
of the periodogram remains constant. Thus, no
matter how much data is collected, the periodo-
gram estimate will not improve. Consequently, we
call the periodogram an inconsistent estimator of
the spectrum.

The variance of the spectral estimate is an espe-
cially important concern in EEG data analysis, re-
quiring a high temporal resolution, which
necessitates the use of relatively short data win-
dows. Furthermore, while tapering reduces bias, it
can actually increase the variance in short data
sets. This is because tapering the data forces the
time points near the ends to converge to zero
(FIGURE 4Ag), effectively reducing the amount of
data available to make the estimate and increasing
the variance. Thus the analyses of short segments
of noisy EEG data are prone to high variance, par-
ticularly when we use tapering to reduce the bias.
How, then, can we produce a spectral estimate
with low bias and a low variance for short seg-
ments of data?

In an ideal world, we could observe multiple
independent measurements or trials of the same
small time window of EEG activity. By averaging
across all the single-taper spectra from each trial,
we could cancel out the measurement noise and
reduce the variance. However, given a single short
segment of data, what can be done to reduce the
variance? To address this problem, we can use a
technique called multitaper spectral estimation (or
the multitaper method), which was developed in
the early 1980s by David Thomson (93) and has
been shown to have superior statistical properties
compared with single-taper spectral estimates (12,
69). The multitaper method works by averaging
together multiple independent spectra estimated
from a single segment of data. How is this possible?
The innovation of the multitaper method is that,
instead of using a single-taper function to compute
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the spectrum, it uses multiple taper functions
(hence the name) to compute single-taper spectra,
which are averaged together. These tapers come
from a particular class of functions called the
discrete prolate spheroidal sequence (DPSS) (85).
DPSS tapers are special because they are not only
optimized to reduce bias, but they also have a
special mathematical property called orthogonal-
ity, which enables them to extract uncorrelated
single-taper spectral estimates from the same data.
Because these single-taper estimates are uncorre-
lated with each other, they can be averaged to-
gether as if they were independent trials of the
same condition, producing a spectrum with re-
duced variance. Another useful property of DPSS
tapers is that they make it particularly easy to de-
fine the spectral frequency resolution and smooth-
ness of the resulting spectrum.

Estimating the multitaper spectrum is therefore
no more complicated than taking the average of
several single-taper spectra. FIGURE 4B shows a
schematic diagram for multitaper spectral estima-
tion. Given a single segment of data, the steps for
computing a multitaper spectrum are as follows.

Procedure 1: Multitaper Spectral Estimation
1 ) Generate a set of DPSS tapers given data
assumptions (see procedure 2 )
2 ) For each of the DPSS tapers, estimate a sin-
gle-taper spectrum for the data
3 ) Compute the mean single-taper spectrum to
form the multitaper spectral estimate

While this procedure is straightforward, it is im-
portant to understand the practical decisions that
must be made when applying multitaper spectral
estimation to real data, such as EEG, so that the
analyses are principled and follow reasonable as-
sumptions. In practice, multitaper spectral esti-
mates are defined by several parameters, which
control the number of DPSS tapers and their prop-
erties. These parameters are N, the size of the data
segment in seconds; TW, the time-half-bandwidth
product; and L, the number of tapers. By under-
standing these three parameters, it is possible to
explicitly control features underlying the multita-
per estimate. We outline a procedure, similar to
that of Babadi and Brown (7), for choosing these
parameter values.

To choose the values for these parameters, we
must only know two things: the time period over
which the data are thought to be stationary and the
desired spectral resolution. First, the data segment
size N should be defined as the maximum length of
time (in seconds) at which the data are thought to
be stationary. Practically, N should also reflect the
scale of the dynamics that can be adequately ob-
served at the time scale of the visualization. For

example, when looking at spectral dynamics across
an entire night of sleep EEG data, we might choose
N to be many tens of seconds long, whereas we
would choose a much smaller N when performing
an analysis of micro-arousals or spindles that oc-
cur on a time scale of seconds.

Next, the spectral resolution (#f) is the band-
width (in Hz) of the main lobe in the spectral
estimate, which controls the minimum distance
between peaks that we can resolve. In practice, a
large #f will produce smooth, low-resolution
peaks, whereas a small #f will produce higher-
resolution peaks with greater detail. Typically, it is
better to err on the side of a smaller #f, so that
potentially important spectral features are not
overlooked.

Given these #f and N, we can compute TW, the
time-half-bandwidth product, as

TW !
N"f

2
(1 )

where TW # 1. The time-half-bandwidth product
(in Hz·s or dimensionless) is a parameter used in
computing the DPSS tapers that relate the fre-
quency resolution to the data window size, and is
simply the product of the window duration (N) and
half the bandwidth of the main lobe (#f/2).

Finally, we must determine L, the number of
tapers used in the estimate. Given TW, it has been
shown that a choice of

L ! <2TW= $ 1 (2 )

where the floor function <· · ·= rounds 2TW down
to the closest integer, has desirable properties for
efficient spectral estimation (7, 69). An expanded
explanation of the rationale for this choice of L can
be found in the APPENDIX.

The number of tapers is important, since it turns
out that the variance of the spectral estimate is
improved by a factor of L compared with a single-
taper estimate. However, increasing the number of
tapers means that the time-half-bandwidth prod-
uct must be larger, which implies that the spectral
resolution of the estimate will be reduced if N is
fixed. It is thus important to account for the un-
derlying assumptions about data stationarity and
spectral resolution when adjusting L to minimize
the variance.

For most applications, we suggest the following
procedure for choosing the spectral estimation pa-
rameters.

Procedure 2: Selecting Multitaper Parameters
1 ) Set the window size N by determining the
length of time over which the signal is thought
to be stationary
2 ) Set the desired frequency resolution #f, given
the oscillatory structure of the data
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3 ) Compute the time-half-bandwidth product
as TW $ N#f/2
4 ) Compute the number of tapers as L $ 2TW % 1

This procedure is simple to implement. For ex-
ample, let us say that a signal is assumed to be
stationary over 30-s intervals and that we desire a
frequency resolution of 1 Hz. Given Eq. 1 , it follows
that TW $ N#f/2 $ (30 s & 1 Hz)/2 $ 15. We then
plug the time-half-bandwidth product into Eq. 2
and estimate the number of tapers as L !

<2TW= $ 1 ! <2% 15= $ 1 ! 29.
To compute the multitaper spectrogram, we es-

timate the multitaper spectra within temporal win-
dows of size N, evenly spaced throughout the data
record. It is common practice to overlap the win-
dows by spacing them at intervals of ' N. Overlap-
ping does not change any of the stationarity
assumptions of the spectral estimator; however, it
provides a temporal interpolation of the data that
may improve the ability to accurately resolve the
timing of spectral events.

We now examine the effect of the multitaper
procedure on the quality of the spectral estimate.
FIGURE 4C shows the power spectrum of a short
segment of simulated noisy EEG data with a 10-Hz
broadband peak, akin to that of EEG alpha (8 –12
Hz) power, as estimated by the periodogram (FIG-
URE 4C, LEFT), the Hanning single-taper spectro-
gram (FIGURE 4C, MIDDLE), and the multitaper
spectrum (FIGURE 4C, RIGHT). The periodogram
has a noisy peak that tapers off slowly, which in-
dicates high bias and variance in the estimate. The
single-taper Hanning spectrogram shows a reduc-
tion in bias, since the peak tapers down lower on
each side compared with the periodogram. The
variance of the single-taper estimate is slightly re-
duced from that of the periodogram, as evidenced
by the smoother appearance of the peak. However,
the magnitude of the noise within the spectral peak
is increased as a result of the artificial shortening of
the data caused by tapering. In contrast to the
periodogram and single-taper estimates, the mul-
titaper spectrum has a much clearer peak, reflect-
ing a significant reduction in variance. Moreover,
the bias of the multitaper estimate is similar to that
of the single-taper estimate and is reduced com-
pared with the periodogram. This falls in line with
the finding (12) that, given control over bias, reso-
lution, and variance, if two out of the three prop-
erties are held to be identical in multitaper vs.
single-taper estimates, the third will always be su-
perior in the multitaper estimate. In this case, the
spectral resolution and degree of bias are fixed,
and the multitaper estimate has greatly reduced
variance compared with the single-taper estimate.

The theoretical improvements in spectral esti-
mation bias and variance provided by the multita-

per method (7, 12, 69) are made even clearer when
examining spectrograms for real EEG data. We re-
turn to the example in FIGURE 2, which shows the
difference between spectrograms computed using
traditional spectral bands (FIGURE 2A), a single-
taper Hanning window (FIGURE 2B), and the mul-
titaper method (FIGURE 2C) for a segment of a
single channel of occipital EEG data during sleep.
The single-taper spectrogram is very noisy due to
the high estimator variance, and it is difficult to
clearly distinguish oscillatory dynamics across
time. In contrast, the multitaper spectrogram has a
reduced variance, which reveals the dynamic in-
terplay of neural oscillations. The reduction in
variance is highlighted in FIGURE 2C, which shows
the single-taper (gray) and multitaper (red) spec-
tral estimates at time points corresponding to
Wake (marker A), Stage N2 (marker B), and Stage
N3 (marker C). In all cases, the single-taper esti-
mates have high variability and a coarse structure
compared with the multitaper estimates, which are
smooth and have clearly defined spectral peaks.

Furthermore, the multitaper method can iden-
tify differences in the sleep EEG that are not pos-
sible to distinguish using traditional methods. To
demonstrate this, we performed a statistical anal-
ysis showing that the reduced variance of the mul-
titaper spectrogram can reveal differences in the
sleep EEG that are too subtle to detect within the
single-taper (Hanning) spectrogram. In particular,
the multitaper spectrogram showed robust, statis-
tically significant differences in EEG power across
many frequencies when comparing late Stage N2
and early Stage N3, whereas the single-taper spec-
trogram found no clear significant frequency struc-
ture. An analysis of sleep during short transient
peri-REM alpha bursts (16) yielded comparable re-
sults. These results strongly suggest that the low
variance of the multitaper spectral estimate greatly
facilitates the identification of sensitive features of
neural activity and sleep architecture within the
EEG. The details of the approach and results can be
found in the APPENDIX and in FIGURE 13.

Other Basis Functions

Other basis functions have also been developed for
spectral analysis. One common set of alternative
basis functions are wavelets, which constitute a
class of tapered, localized wave-like oscillations
that can be easily scaled temporally. In fact, Fou-
rier analysis can be considered to be a special case
of wavelet analysis since sinusoids of different fre-
quencies can be thought of as a single function
that is temporally scaled. Wavelet decomposition
(46, 60, 70, 71) is an excellent tool for spectral
analysis and has high temporal specificity, a high
sensitivity to low-amplitude signals, and a good
time-frequency resolution tradeoff (94). Conse-
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quently, wavelets are often used to analyze neural
data. However, wavelets do not provide multiple
independent estimates of the same underlying
spectrum and therefore do not reduce the variance
of spectral estimates in the way that multitaper
estimation does. Thus wavelet estimates may be
noisier and less statistically efficient than multita-
per estimates. Additionally, wavelets are not opti-
mized to reduce spectral leakage like DPSS tapers,
so wavelet-based spectral estimates will have
greater bias than multitaper estimates. Given that
we are looking at networks of neurons with estab-
lished oscillatory properties, frequency specificity
is of the utmost importance in this particular do-
main. Thus using sinusoids with direct frequency
representations rather than the (pseudo-frequen-
cies( derived from non-sinusoidal wavelets makes
a great deal of sense for neural data analysis. More-
over, given the vast amount of data in a single night
of sleep and the ability of the multitaper spectro-
gram to characterize the EEG with a temporal res-
olution appropriate for established microevents,
we believe that the temporal specificity of the mul-
titaper method should be sufficient for this appli-
cation. For a detailed theoretical and experimental
comparison of multitaper and wavelet estimation
for neural data, see Ref. 94.

In addition, other approaches, such as empirical
mode decomposition (EMD), have been proposed
as a means to estimate instantaneous frequency in
rapidly time-varying signals (31a, 40a, 60a), such as
event-related potentials and EEG microevents.
However, the theoretical basis for these methods
(40a), as well as their applicability to hours-long
sleep EEG data with complex broadband structure,
requires further study.

Data and Pre-Processing

Implementation. The multitaper spectrogram is
constructed by estimating the multitaper spectrum
in each of a set of data segments of fixed size,
which can be overlapped for increased temporal
continuity. By changing the parameters, spectro-
grams can be designed for clarity at different times
scales. In this paper, we looked at the data on
full-night, ultradian, and microevent time scales,
choosing our parameters accordingly for each
scale. For the full-night time scale, we focus on
large-scale oscillation activity over many hours. We
therefore chose parameters of N $ 30 s spaced at
5-s intervals, #f $ 1 Hz, TW $ 15, L $ 29. For the
ultradian spectrograms, we wanted to observe de-
tail within the rapidly changing dynamics within a
single sleep stage over the course of minutes. We
therefore increased the temporal resolution while
maintaining the same spectral resolution, choos-
ing N $ 6 s spaced at 0.25-s intervals, #f $ 1 Hz,
TW $ 3, L $ 5. For the microevent spectrograms,

we wanted to observe short time dynamics occur-
ring on a scale of only a few seconds. In this case,
spectral resolution and estimate variance reduc-
tion are limited by the small window size needed to
capture spindle and K-complex activity. We sacri-
ficed frequency resolution to maintain a low-vari-
ance estimate within a small data window,
choosing N $ 2.5 s spaced at 0.05-s intervals, #f $
4 Hz, TW $ 5, L $ 9 for our visualization.

The multitaper spectrograms were computed us-
ing the mtspecgramc function in the Chronux open
source library (http://www.chronux.org/).

Experimental data and preprocessing. For the
experimental data, 10 healthy right-handed sub-
jects (5 women and 5 men) with ages ranging from
19 to 32 years (mean: 25.8 yr; SD: 5.09) and body
mass index (BMI) of ' 30 slept for two consecutive
nights in the Massachusetts General Hospital sleep
laboratory. Subjects were prescreened to ensure a
regular sleep schedule and no history of sleep dis-
order, psychiatric problem, or neurological dis-
ease, nor any history of tobacco or prescription/
recreational drug use. We performed one night of
home monitoring before the lab testing to exclude
obstructive sleep apnea (OSA) [using a threshold of
apnea-hypopnea index (AHI) ' 5, and respiratory
disturbance index (RDI) ' 15] (WatchPAT,
Itamar Medical). In addition, an experienced
technician scored the experimental poly-
somnography (PSG) data following the first ex-
perimental night, and one subject was excluded
after failing to meet the OSA criteria on the first
night. Urine tests for drug use (Xalex Multi Drug
Kit for 10 Drugs) were performed at screening
and before each experimental night. Addition-
ally, female subjects were screened for preg-
nancy. These studies were approved by the
Human Research Committee Institutional Re-
view Board (IRB) at the Massachusetts General
Hospital.

Subjects were fit with a high-density (64-
channel) EEG cap, as well as standard clinical poly-
somnogram sensors including pressure transducer
airflow (PTAF), airflow, abdominal belt, and eye,
chin, and limb electrodes. Visual staging of sleep
data was performed before the statistical analysis
by an experienced clinical sleep technician using
contemporary American Academy of Sleep Med-
icine (AASM) guidelines (42).

The experimental data were processed using a
64-channel Brain Vision system with Laplacian ref-
erencing. The experimental spectrograms, exclud-
ing the single-channel examples, are the median
spectrogram from the fronto-central or occipito-
central eight-electrode montages, the details of
which can be found in the APPENDIX.

Clinical data. De-identified clinical PSG data
was selected from the Massachusetts General Hos-
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approach may be applied to low-density EEG within
clinical settings.

The Full Night Sleep Spectrogram

One of the primary benefits of using the multitaper
spectrogram is the ability to observe EEG dynamics
across an entire night in a single visualization. In
particular, we look at a visualization of median
occipital activity, since all of the major sleep-re-
lated oscillations are visible in this region of the
brain. While the features required to visually score
EEG time traces become effectively unreadable at a
time scale of only a few minutes, the spectral dy-
namics of the sleep EEG can be clearly observed
over a time scale of many hours. FIGURE 5 shows
the occipital multitaper spectrogram of the sleep
EEG of three different subjects (FIGURE 5, BOT-
TOM), along with the visual-scored hypnogram
(FIGURE 5, TOP). Even without knowledge of the
sleep EEG, it is possible to discern repeating multi-
oscillation spectral motifs in the dynamic structure
of the full night multitaper spectrogram that cor-
respond well with the different aspects captured by
the hypnogram architecture. Moreover, it is possi-
ble to discern differences in sleep architecture and
oscillation structure between subjects.

Spectral Dynamics at the Ultradian Scale

At the coarsest level, sleep is segmented into peri-
ods of Wake, REM, and NREM, the constituent
components of the ultradian cycle. Current clinical
practice defines Wake and REM as unitary states,
and NREM is divided into three discrete stages.
The multitaper spectrogram makes plain the con-
tinuum of changes within and between each of
these states. In the process of doing so, we will
show that the EEG components used in traditional
scoring also are represented in the time-frequency
domain.

The Spectral Dynamics of Wakefulness and
the Start of the Sleep Onset Process

The most conspicuous spectral feature of the EEG
during the transition from wakefulness to sleep is
high power in the alpha band (8 –12 Hz) in EEG
leads overlying the occipital cortex, as originally
shown by Berger and Adrian (2, 3, 9) at the begin-
ning of the 20th Century. As we show here, this
alpha activity is high at the moment when eyes
close, gradually decreases during the subsequent
minutes, and abruptly dissipates at sleep onset.
Thus inspection of the spectrogram can give an
objective characterization of the sleep onset pro-
cess. Occipital alpha waves are generated by the
visual cortex and thalamus (11). Similar 10-Hz os-
cillations are also observed in the somatosensory
cortex, where they are referred to as mu rhythms
(45), and in the auditory cortex (53), where they are

referred to as tau rhythms. These alpha and alpha-
like waves are thought to represent an idling state
that occurs when sensory cortexes are disengaged
or inhibited (45, 48). Accordingly, alpha oscilla-
tions are reduced in size during sensory stimula-
tion (45, 48, 53). Alpha waves can be modulated by
attention, for instance, increasing in power in the
visual cortex when visual information is “tuned
out” (11, 64, 68).

Alpha rhythms appear to be governed in part by
a unique class of thalamocortical neurons that syn-
chronize via gap junctions and that burst prefer-
entially at alpha frequencies when hyperpolarized
(40). Recent animal studies suggest that a moder-
ate level of cortical input, activating metabotopic
glutamate receptor subtype 1a (41) or brain stem
cholinergic input activating muscarinic receptor
subtype M3 (57), leads to rhythmic burst firing at
alpha-band frequencies in a subset of neurons in
the visual thalamus (lateral geniculate nucleus)
mediated by T-type calcium channels. These glu-
tamatergic thalamocortical neurons rhythmically
excite local GABAergic interneurons, which period-
ically silence tonically firing relay thalamocortical
neurons (41, 57, 58). Two groups of thalamocorti-
cal neurons are suppressed at the positive or neg-
ative peak of the alpha rhythm, resulting in a
dipole within visual cortex. Intrinsic burst firing of
cortical pyramidal neurons at alpha frequencies
may also contribute to the generation of the
rhythm (84). Theta-band oscillations occurring in
early NREM sleep are likely generated by similar
mechanisms but with a lower level of cortical
and/or brain stem input, resulting in a slowing of
the intrinsic oscillation of thalamic neurons (41).

The act of falling asleep is a continuous, dy-
namic, multifocal neural process, with behavioral
and physiological changes occurring with different
dynamics throughout the period of sleep onset (67,
73). As mentioned, the most prominent hallmark of
the sleep onset process is the appearance of a
strong occipital oscillation in the alpha (8 –12 Hz)
band upon the closing of eyes during wakefulness,
which is present in 90% of adults (FIGURE 6). As a
subject falls asleep, the occipital alpha power grad-
ually decreases, then becomes intermittent, and
then disappears. The loss of alpha, which signifies
scored Stage N1 sleep, is followed, after some in-
terval, by a rise in power in delta (1– 4 Hz) and
theta (4 – 8 Hz), marking the start of NREM-related
neural activity. Should the subject be aroused or
wake up, the process rapidly reverses, with high
power in delta and theta bands giving way to in-
creased power in the alpha band, consistent with a
re-instatement of brain stem cholinergic inputs.
Recent studies have shown that the latency be-
tween thalamic and cortical deactivation during
the loss of alpha and rise of low-frequency oscilla-
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FIGURE 5. The multitaper sleep EEG spectrogram can clearly characterize the sleep oscillation architecture of
a full night in a single visualization
The technician-scored clinical hypnogram (top), and multitaper occipital sleep EEG spectrograms (bottom) are presented for
three different subjects. In each case, the spectral dynamics within multitaper spectrograms correspond well with the hypnogram
while also revealing the continuous oscillatory dynamics associated with the activity of specific cortical and subcortical networks
during sleep.
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tions is highly variable (59) and that some subjects
can exhibit a delay of several minutes between the
loss of alpha before the low-frequency rise, during
which time behavior continues as if the subjects
were awake (73). These results suggest that it is
therefore the presence of low-frequency power
that inhibits behavior during sleep onset rather
than the loss of alpha.

The EEG spectral dynamics of wakefulness and
the sleep onset period are illustrated in FIGURE 6A,
which shows the occipital multitaper spectrogram
from a subject during the start of the sleep onset
period. Initially, when the subject is quiescent with
open eyes, the spectrogram has low power across all
frequencies. When the subject’s eyes close, the spec-
trogram changes dramatically, showing strong spec-
tral power with a central frequency at !9 Hz. In
general, this oscillation falls within the range of 8–12

Hz, which is called the alpha band. Due to the im-
perfect sinusoidal structure of the alpha oscillation, it
is also common to observe spectral power at the
second alpha harmonic, which is two times the cen-
tral frequency of the alpha oscillation. In this case,
the alpha harmonic appears at !18 Hz. As the sleep
onset process progresses, the oscillation power and
bandwidth in alpha gradually decrease, then fluctu-
ate, then disappear. The disappearance of alpha
aligns well with the start of technician scored Stage
N1. With the loss of power in alpha, the spectrogram
shows a broadband increase in low-frequency
power, in particular in frequencies spanning the
slow/delta (0.5–4 Hz) and theta (4–8 Hz) bands. The
sudden subsequent disappearance of the power in
delta/theta and reemergence of power in alpha sig-
nifies an arousal to wakefulness, which also aligns
well with the hypnogram. The spectrogram then

FIGURE 6. The multitaper characterization of EEG spectral dynamics associated with quiescent sleep onset and active
wakefulness
During quiescent wakefulness as a subject falls asleep (A), a strong occipital oscillation in the alpha band appears when the eyes are closed, then
gradually decreases before dropping out at the initiation of NREM sleep. Arousals throughout sleep are indicated by strong, transient alpha
power. Active wakefulness (B) is associated with a variety of spectral patterns corresponding to different physiological states, including motion ar-
tifacts, which appear as strong broadband power. Motion artifacts are also hallmarks of arousals accompanied by motion during the night.
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shows a reversal back to a high-delta/-theta state
without power in alpha, indicating that the subject
has fallen back to sleep. Thus, using the multitaper
spectrogram, it is possible to characterize the sleep
onset dynamics of this subject with a single
visualization.

It is also useful to be able to identify nonquies-
cent wakefulness common at the early stages of a
sleep study or experiment. FIGURE 6B shows the
occipital multitaper spectrogram for a different
subject during a restless period of waking drowsi-
ness. Overall, these periods show a mix of eyes
open wakefulness and transient alpha with broad-
band background noise. Additionally, strong sub-
ject movement appears in the spectrogram as
vertical lines spanning all frequencies. While these
motion artifacts are not part of the EEG signal, they
provide important information regarding the qui-
escence of the subject (or lack thereof) during
wakefulness. Motion artifacts are also important
during sleep, since they accompany arousals that
can appear throughout the night (see FIGURE 6A at
the moment of arousal).

The Spectral Dynamics of the NREM
Continuum

Clinically, NREM sleep is divided into three stages
(Stages N1–N3) using thresholds on the amount of
delta and theta oscillations as well as spindles and
K-complexes observed within a given 30-s epoch of
sleep EEG based on visual inspection (42). While
these guidelines provide simple rules by which to
categorize degrees of NREM sleep by eye, a great
deal of information is lost by limiting the progres-
sion of NREM to only three possible states, be-
tween which the transitions are instantaneous. In
contrast, the multitaper spectrogram reveals the
information-rich continuum of spectral dynamics
of NREM sleep, providing a robust visual and
quantitative framework for understanding the ac-
tivity, interactions, and neural mechanisms of the
underlying oscillations.

The most striking spectral feature of Stage N2
sleep is the presence of increased power in the
sigma band (12–15 Hz). On closer inspection, both
in time domain and in higher time resolution spec-
trograms, this increased sigma band power occurs
in transient !1-s bursts that are referred to as sleep
spindles (FIGURES 7 AND 8). Sleep spindles are
thalamocortical oscillations that are initiated by
rhythmic bursts of action potentials in GABAergic
neurons in the thalamic reticular nucleus (TRN),
whose burst firing is mediated by Cav3.3 T-type
calcium channels (6). These bursts of action poten-
tials lead to large inhibitory postsynaptic potentials
in thalamic relay neurons. This hyperpolarization
removes the inactivation of a different subtype of
T-type calcium channels (Cav3.1), resulting in a

shorter, stereotyped burst of action potentials in
relay neurons. The burst of action potentials in
glutamatergic relay neurons leads to a depolariza-
tion of cortical pyramidal neurons (reflected in the
EEG recording) and a reactivation of TRN neurons,
completing the cycle (5, 89). Interconnections of
TRN neurons via electrical and chemical synapses
control the level of synchronization of the bursting
within functionally coupled groups of TRN neu-
rons. The extent of this synchronization deter-
mines the power and duration of the spindle
recorded in the EEG. The spindle frequency itself is
determined primarily by the kinetics of the synap-
tic potentials in the thalamic relay and TRN neu-
rons, in particular the decay of the IPSPs in relay
neurons. Recent human studies suggest that spin-
dles are not uniform but differ in frequency and
cortical topography, reflecting activity in different
thalamocortical circuits (29, 66). Clinical studies
have identified prominent abnormalities in sleep
spindles in schizophrenia (61– 63) and other severe
disorders such as autism (55) and mental retarda-
tion (82), and correlated these abnormalities to
deficits in sleep-dependent memory consolidation
(98). Recent studies comparing manual, auto-
mated, and crowd-sourced scoring methods have
underscored the fact that scoring of these clinically
relevant events manually is an imprecise and time-
consuming task (99), and is not performed in clin-
ical analysis. As we show here (FIGURES 7 AND 8),
the multitaper spectrogram provides a useful way
to characterize spindles and ascertain their
frequency.

Stage N3 sleep is characterized by increased low-
frequency EEG power in the slow-oscillation (' 1
Hz) and delta (1– 4 Hz) bands, occurring in at least
20% of an epoch. Slow oscillations reflect local
synchronous periods of inactivity in cortical neu-
rons that are likely influenced by thalamic connec-
tions (25, 66, 87, 88, 90, 91). These periods of
neuronal inactivity are often referred to as “down”
or “off” states (22, 66). Delta (1– 4 Hz) rhythms are
thought to be generated primarily by the thalamus
through the interaction of intrinsic voltage-depen-
dent conductances of thalamocortical neurons (43,
44). Withdrawal of excitatory brain stem cholin-
ergic and aminergic influences on relay neurons
abolishes the tonic firing of these neurons ob-
served during wakefulness and causes them to hy-
perpolarize, placing them in a rhythmic mode of
firing where bursts are generated at a delta fre-
quency (40). This hyperpolarization brings the
membrane potential to a range where hyperpolar-
ization-activated cation channels (encoded by
HCN genes) can open, leading to a so-called H
current as well as de-inactivation of low-threshold
calcium channels. The H current provides a depo-
larizing drive, which returns the membrane poten-
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tial to threshold, leading to a low-threshold
calcium spike and a burst of action potentials. The
after-hyperpolarization caused by the influx of cal-
cium during this burst and subsequent activation
of calcium-activated potassium channels cause a
hyperpolarization that restarts the cycle. During
this phase of sleep, TRN neurons are more hy-
perpolarized, preventing the occurrence of spin-
dle oscillations. The frequency range of this
activity and its highly synchronized nature, along
with other biochemical evidence and computa-
tional considerations, led Tononi and Cirelli (24)
to propose that such slow-wave activity serves to

depress or depotentiate the majority of excit-
atory cortical synapses, providing a homeostatic
mechanism to prevent saturation of synaptic ef-
ficacy. Although not universally accepted, this
theory provides one potential mechanism by
which sleep may benefit learning. Slow oscilla-
tions are also associated with opening of the
brain’s glial-mediated lymphatic system, or
“glymphatic” system, which permits clearance of
beta amyloid proteins that are implicated in the
development of Alzheimer’s disease (102). As can
be easily seen in the multitaper spectrogram,
such slow and delta-band activity is high and

FIGURE 7. The multitaper characterization of EEG spectral dynamics associated with sleep onset and the continuous NREM
progression into slow-wave sleep
During the sleep-onset process, oscillation power in alpha gives way to a continuous progression into slow-wave sleep, with increasing delta and
theta power and a rise and fall of sigma power. This gradual transition is clearly visible in the multitaper occipital spectrogram (A), as well as in
the time domain traces (B). The transition into slow-wave sleep forms a spectral motif that is repeated after an arousal (C, markers 1 and 2). This
progression can be reversed during the lightening of NREM sleep (C, marker 3), with a gradual reduction in delta and theta power, as well as a
return of sigma power.
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FIGURE 8. The multitaper spectrogram clearly represents spindles as distinct regions of transient spec-
tral power
A multi-scale visualization of the frontal EEG spectrogram shows spindles centered around a single frequency (A) in one
subject, and “high” and “low ”spindles in another subject (B). By using the multitaper spectrogram, it can be much easier
to disambiguate distinct overlapping spindles at different frequencies than in the time-domain traces (bottom).
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consolidated early during the night but becomes
more fragmented and less intense later in the
night when REM sleep becomes more promi-
nent. Conversely, in many sleep disorders and
other neurological conditions, sleep is more frag-
mented and less slow-wave activity is observed,
possibly accounting in part for diminished day-
time cognitive performance. Classic sleep scoring
is less useful to fully assess this fragmentation
since the relatively long 30-s epochs do not allow
the assessment of brief events.

FIGURE 7A shows the occipital multitaper
sleep spectrogram from a subject during the pro-
gression from scored Wake to Stage N1, N2, and
N3. During this progression, we observe the con-
tinuous dynamics of oscillations in alpha, delta,
sigma, and theta, as well as the equivalent time-
domain traces (FIGURE 7B). Initially, just as in
FIGURE 6A, the subject goes through the sleep
onset process, in which strong power in alpha
(note the motion artifact) transitions to broad-
band low-frequency power at the start of scored
Stage N1. This broadband oscillation has a sharp
peak near 1 Hz and grows continuously in both
amplitude and bandwidth during the progres-
sion of NREM sleep. Shortly after the onset of the
low broadband power, the spindle-related oscil-
lation in sigma appears, corresponding with the
scored Stage N2. As NREM progresses, power in
sigma gradually decreases in both amplitude and
bandwidth. Around the time of scored Stage N3,
a spectral peak in theta power appears, which
also decreases in power and bandwidth as NREM
continues.

Although delta and theta power are tradition-
ally viewed as two separate entities, it is impor-
tant to consider the source of the oscillatory
power. During the NREM progression, we see a
low-frequency oscillation with a long-tailed
bandwidth that increases into the theta range. In
addition, we see a distinct oscillation with a
clearly resolved peak that falls within the theta
range. In the case of the low-frequency oscilla-
tion, power in theta will be directly linked to the
low-frequency (delta) power since it is merely
the tail of the same oscillation. In contrast, the
activity in a distinct theta oscillation may be
uncorrelated and be generated by completely
different networks than the low-frequency oscil-
lation. Similarly, at the beginning of sleep, theta
activity may simply reflect a slow alpha oscilla-
tion (41). By using the multitaper spectrogram,
we can easily distinguish between a distinct os-
cillation residing within a specific frequency
range and broadband power that happens to
span that frequency range.

Overall, FIGURE 7A illustrates the principal spec-
tral motif of NREM sleep, variations of which can

be seen repeated throughout the night. We can
therefore use this knowledge to characterize larger
scale NREM dynamics and sleep fragmentation.
FIGURE 7C shows the occipital multitaper spectro-
gram from a different subject during a disrupted
bout of NREM. In this example, the NREM spectral
motif is repeated three times, aligning well with
both the hypnogram (FIGURE 7C, TOP) and total
observed delta power dynamics (FIGURE 7C, BOT-
TOM). The first motif appears during the sleep
onset process, in which eyes-closed alpha transi-
tions to the oscillations of NREM sleep
(FIGURE 7C, repetition 1 ). As the power in sigma
and theta starts to decline, the subject has an
arousal to wakefulness, marked by a motion arti-
fact followed by a short burst of power in alpha.
The oscillation in delta immediately resets to low
power and small bandwidth, and then the NREM
process starts again for the second time
(FIGURE 7C, repetition 2 ). A subsequent reduction
in delta oscillation power and bandwidth indicates
a lightening of NREM sleep, often linked to a
scored arousal. If there is progressive lightening of
sleep, we will see the same spectral dynamics of
NREM motif but in reverse. In this case, the subject
lightens (FIGURE 7C, repetition 3 =) and power in
delta gradually decreases, while power in theta and
sigma starts to appear again.

Thus, by understanding the progression of os-
cillation dynamics during a single, uninterrupted
bout of NREM, it becomes straightforward to
characterize the general course and fragmenta-
tion of NREM throughout the entire night of
sleep.

NREM Microevent Spectral Dynamics

Spindles. Clinical sleep scoring rules define
sleep spindles as 11- to 16-Hz frontal-central
oscillations lasting 0.5 s or more (42). The broad-
ness of this definition and the difficulty of visu-
ally gauging the precise oscillation frequency in
the time domain make scoring of spindles time-
consuming and variable (99). Moreover, there is
cross-subject heterogeneity in spindle morphol-
ogy (10, 27, 28, 31, 101), which makes the cre-
ation of a one-size-fits-all automated classifier
challenging (76). The multitaper spectrogram,
however, provides a clear picture of the putative
spindles that comprise transient sigma band
activity.

FIGURE 8 shows examples of the frontal multi-
taper spectrogram of two different subjects during
NREM. The sigma band appears to be a cohesive
oscillation when viewed at a time scale of tens of
minutes (FIGURE 8, TOP) or more. However, when
examining the data on a time scale of a few min-
utes, it becomes clear that the sigma band power is
comprised of many spindles, which appear in the
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spectrogram as well defined transient peaks of
spectral power (FIGURE 8, MIDDLE). On a time
scale of a few seconds, the central frequency and
duration of the spindle spectral peaks can be read-
ily discerned and align well with time domain (FIG-
URE 8, BOTTOM).

While traditional time domain spindle scoring is
the most straightforward in subjects with clear
consistent spindles (FIGURE 8A), it is much more
difficult to visually discern spindles in subjects in
which the morphology is highly variable or with
the superposition of “fast” and “slow” spindles
(FIGURE 8B). In contrast, the multitaper spectro-
gram representation can be easily interpreted re-
gardless of the variability in spectral morphology,
since the frequency decomposition provides a
clear separation between spectral peaks of differ-
ent frequencies.

K-complexes. K-complexes are transient low-
frequency oscillations that reflect brief periods of

reduced cortical neuronal activity, or so-called
“down” states (22). K-complexes occur spontane-
ously during NREM sleep but may also be elicited
by sensory stimuli (22). In the multitaper spectro-
gram, K-complexes appear as brief periods of
broadband power in low frequencies. FIGURE 9
shows the occipital multitaper spectrogram of
K-complexes during NREM, aligned with the time
domain trace. K-complexes may be readily distin-
guished from motion artifacts, as the spectral
power quickly attenuates by 2–3 Hz, and the dura-
tion is shorter. FIGURE 9 shows examples of the
multitaper spectrogram of K-complexes in refer-
ence to the NREM progression.

The Spectral Dynamics Surrounding REM
Sleep

REM sleep is defined by an “activated” EEG and a
loss of muscle tone (4, 30). In rodent and cat stud-
ies, theta-band activity dominates the EEG during
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FIGURE 9. The multitaper spectrogram represents K-complex activity as transient low-frequency power
A multi-scale visualization of the spectrogram into the frontal EEG spectrogram shows the spectral signatures of K-complexes during the start
of NREM.
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this state due largely to the dorsal location of the
hippocampal formation and the prominent role in
theta rhythms in rodent behavior (96). In humans,
theta activity is more phasic (20) and of lower
frequency. In mice and children, theta activity has
been observed in the EEG just before bouts of
cataplexy, a condition in which REM atonia is
triggered during wakefulness by emotional arousal
(95). This suggests that the theta activity observed
during REM sleep could be linked mechanistically
to REM atonia. In clinical sleep scoring, REM is
scored as a single, monolithic state, but REM has
been separated out into at least two parts: a tonic
REM and a phasic REM consisting of muscle
twitches and rapid eye movements. Although not
observed in the clinical EEG, in animal studies (26)
or deep brain recordings in humans (32, 54),
ponto-geniculo-occipital waves, events which are
likely involved in dreaming, can also be observed.
Multitaper spectrograms of the EEG and electro-
myogram (EMG) are ideal for distinguishing tonic
and phasic activity and the dissociation of EEG and
EMG activity that occur during symptoms of nar-
colepsy such as sleep paralysis, as well as impaired

muscle atonia in REM sleep behavior disorder due
to degeneration of caudally projecting neurons in
the subcoeruleus (SubC)/sublateral dorsal (SLD)
nuclei of the dorsal pons (13, 34).

In R&K scoring, the EEG of REM sleep is defined
as having a low-amplitude signal comprised of
mixed frequencies, sawtooth waves, and the ab-
sence of spindles or K-complexes (42). While not
an explicit component of the scoring criteria,
power in alpha is also commonly observed, espe-
cially in younger subjects. In practice, REM sleep is
most easily defined through the presence of rapid
eye movements, as well as low power with tran-
sient bursts of muscle activity in the EMG. While
this assortment of multi-modal observations com-
prising REM sleep suggests a plurality of evolving
processes, REM is scored as a single state into which
the subject instantly transitions. In contrast, as we
show in FIGURE 10A, the multitaper EEG spectro-
gram shows a gradual progression of oscillatory
changes spanning traditionally defined REM.
FIGURE 10A shows 60 min of the frontal (FIGURE
10A, TOP) and occipital (FIGURE 10A, MIDDLE) mul-
titaper spectrum from a different subject transition-

FIGURE 10. The multitaper characterization of EEG spectral dynamics associated with the REM sleep and transitional periods
During the initiation of REM sleep, low-frequency power drops off, and background power increases. Additionally, transient occipital alpha burst-
ing can be observed in NREM preceding and following the scored REM period. In A, the multitaper spectrogram shows the EEG spectral dynam-
ics in the surrounding 1-h period of scored REM, with peri-REM alpha bursting visible in the occipital spectrogram. Eye movement occurs
sporadically throughout scored REM. In a second subject, a shorter time scale (12 min) reveals the clear transient alpha power of the peri-REM
bursts, which can continue many minutes after rapid eye movements have stopped. The time-domain waveform of a single peri-REM burst (B;
bracket region) is shown in C.
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ing from NREM to REM then back to NREM. While
the hypnogram depicts a series of instantaneous
transitions, the multitaper spectrogram shows grad-
ual changes in the EEG activity during this period.
Before the scored REM period, we observe a gradual
transition out of NREM, with a decrease in low-fre-
quency power and a decrease in sigma power. Sim-
ilarly, we see the reverse sequence of spectral events,
an increase in slow and sigma power, before the end
of scored REM.

Peri-REM Low-Alpha Bursting

The multitaper spectrogram provides a computa-
tional basis with which to visualize the oscillatory
structure of the sleep EEG on a larger time scale
than the time domain, which makes it possible to
observe phenomena not readily apparent in 30-s
epochs. FIGURE 10A shows the period surrounding
a bout of scored REM for another subject, but on a
time scale of !10 min. During the transition out of
NREM, the occipital spectrogram shows transient
increases in occipital power in low-alpha frequen-
cies, which may persist though scored REM into
the next bout of NREM. Plotting the times of rapid
eye movements against the spectrogram (FIGURE
10B, BOTTOM) shows that certain REM alpha
bursts may be correlated with shifts between tonic
and phasic REM. We refer to these transient alpha
oscillations during REM as peri-REM low-alpha
bursts, or simply peri-REM alpha bursts.

While transient alpha power during REM has
been studied in great detail by Cantero (15–19),
this obvious feature of REM sleep microstructure is
absent in R&K scoring. This is perhaps because
individual bursts may not be long enough to trigger
a scored arousal or epoch of Wake and would be
too time consuming to score manually. By using
the multitaper spectrogram, these peri-REM alpha
bursts can be easily identified and can be used as
not only an indicator of REM but also as a powerful
predictor of impending REM onset during NREM.

Spectral Motifs Within the Context
of a Full-Night Spectrogram

Given the spectral motifs observed around scored
Wake, NREM, and peri-REM epochs, it is possible
to quickly characterize the sleep EEG from the
full-night occipital multitaper spectrogram. Take,
for example, the multitaper spectrogram in
FIGURE 1C. We first see the signatures of nonqui-
escent wakefulness (FIGURE 6B), followed by wak-
ing power in alpha (FIGURE 6A). We see the sleep
onset process, in which power in alpha transitions to
the NREM spectral motif (FIGURE 7A) at !1 h (1:00)
into the record. By examining the changes in power
and bandwidth in delta and theta, along with the
corresponding changes in sigma, the dynamics of the

fragmentation in NREM can be readily discerned
(FIGURE 7B). After deepening, lightening, and deep-
ening in NREM again (!1:00–3:00), the EEG transi-
tions into the peri-REM spectral motif (!3:00–3:30),
with the periodic peaks in alpha and reduced low-
frequency power (FIGURE 10A). Note that the low-
frequency power is visibly higher than that during
eyes-closed alpha and that the power in alpha itself is
persistent during wakefulness and thus appears
more vividly in the spectrogram. The EEG then
successively transitions between NREM and
peri-REM motifs four more times (!3:30-9:30),
with a period of wakeful power in alpha in the
last of the NREM bouts (!8:30). Through exam-
ining the changes in spectral power during each
of these NREM periods, it is possible to describe
the differences in duration of fragmentation at a
more precise level if required. The final motif of
NREM activity changes to an eyes-closed alpha
followed by a mixed period of quiescent and
nonquiescent wakefulness as the subject wakes
up (!9:30 –10:30). Throughout the record, mo-
tion artifacts can be seen as faint vertical lines,
providing insight into arousals and lightening of
NREM sleep.

Characterizing Other Signals: Muscle
Activity

The multitaper spectrogram can also characterize
other biosignals such as muscle activity. FIGURE 11
shows examples of chin EMG multitaper spectro-
gram (FIGURE 11, TOP, with corresponding time-
domain traces) (FIGURE 11, BOTTOM) for periods
surrounding scored Wake (FIGURE 11A) and REM
(FIGURE 11B) sleep. Wakefulness is characterized by
prolonged periods of high muscle tone, represented
by persistent broadband power in the spectrogram,
the power of which falls away during sleep onset.
Transient low-powered muscle twitching is common
during REM sleep, which is visible in short broad-
band bursts in the EMG spectrogram. Analysis of
EMG could be helpful in quickly disambiguating pe-
riods such as REM and Stage N1, in which EEG ac-
tivity is similar but EMG activity differs.

Applications to Clinical Analysis

In the preceding sections, we have used high-den-
sity EEG under experimental conditions to demon-
strate the ability of the multitaper spectrogram to
provide a clear characterization of neurophysiolog-
ical oscillations during sleep on multiple time
scales. Given the ease of this characterization,
the multitaper spectrogram has great potential
as a tool to supplement standard clinical analysis
and to offer greater diagnostic efficiency. As an
illustration of the feasibility of this approach un-
der clinical conditions, we analyzed the six-
channel clinical EEG data from patients
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FIGURE 11. The multitaper spectrogram can also characterize other biosignals such as muscle activity
The chin EMG multitaper spectrogram (top) and time-domain trace (bottom) are shown for time periods surrounding scored
Wake (A) and REM (B) epochs. Muscle activity during wakefulness has prolonged periods of high muscle tone, represented
by persistent broadband power in the spectrogram, the power of which falls away during sleep onset. Transient low-powered
muscle twitching is common during REM sleep, which is visible in short broadband bursts in the EMG spectrogram.
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undergoing PSG testing at the Massachusetts Gen-
eral Hospital Sleep Laboratory.

Multitaper Sleep Spectrogram
Characterization of Disrupted Sleep

As an example of potential clinical utility, we use the
multitaper sleep EEG spectrogram to illustrate frag-
mentation of NREM during respiratory events like
sleep apnea. In FIGURE 12A, the hypnogram (FIG-
URE 12, TOP), occipital clinical multitaper sleep EEG
spectrogram (FIGURE 12A, MIDDLE), and the timing
of technician-scored respiratory events (FIGURE 12A,
BOTTOM) are shown for a subject with obstructive
sleep apnea (OSA) (AHI: 27.9). The multitaper spec-
trogram reveals a dramatic change during a series of
respiratory events (apnea and hypopnea) occurring
during a NREM sleep. At the onset of the respiratory
events, the low-frequency power typical of NREM
becomes fragmented, with suppression of low-fre-
quency power that coincides with bursts of power in
delta/theta, alpha, and sigma at each respiratory
event. While this fragmentation of EEG activity and
resulting “arousals” have been observed in the time-
domain traces, the multitaper spectrum allows us to
more easily view the correspondence between apnea
events and the EEG on a much larger time scale. The
ability to observe and characterize these events and
relationships could provide a means of rapidly iden-
tifying the occurrence and context of apnea events,
and could replace the current clinical practice of
painstakingly identifying individual events in the
time- domain.

Sleep Staging from Multitaper
Spectrograms

In the preceding sections, we have shown that all of
the features used in R&K scoring are visible in the
multitaper spectrogram. It follows that the multita-
per sleep spectrogram could provide a means to rap-
idly characterize sleep architecture in clinical
settings. As proof-of-concept of this hypothesis, one
of the authors (M.P.) scored 16 clinical sleep records:
8 from patients without any sleep disorders and 8
from patients with either moderate-severe OSA or
elevated periodic limb movements of sleep (PLMS).
Visual staging of each record into Wake, NREM, and
REM epochs was performed using clinical EEG mul-
titaper spectrograms alone, with the scorer blind to
the time-domain traces, any other PSG signals (eye
movement, EMG, respiration, etc.), and any informa-
tion about the clinical condition of the patient. Tran-
sitions between stages could be marked at any point
of time. Scoring was performed using custom soft-
ware that allowed for annotation of full-night and
ultradian level multitaper spectrograms (as detailed
in this paper) for each of the six clinical EEG chan-
nels, as well as the mean of the two occipital leads
(see FIGURE 14 in the APPENDIX). This spectral scoring

was then compared with the clinical sleep R&K
stages scored by technicians using the full PSG.

The results of this proof-of-concept experiment
showed that there was no significant difference
between the epochs of Wake, REM, and NREM
scored by technicians using R&K scoring and the
full PSG and epochs scored using only the sleep
EEG multitaper spectrograms (Cohen’s Kappa $
0.71, P ' .0001 given H0: categorical agreements
occurred by chance). To examine the clinical ap-
plicability of these results, we compared the ap-
nea-hypopnea index (AHI) and respiratory
disturbance index (RDI), two clinical indexes used
for measuring the severity of sleep apnea, using
tech-scored and spectrogram-scored estimates of
total sleep time (TST), the denominator in these
calculations. While spectral scoring tended to esti-
mate a shorter TST than tech scoring (median dif-
ference: 21 min), there was no significant
difference between the clinical designations de-
rived from the two methods. For both AHI and
RDI, 15 of the 16 records (93%) fell within the same
clinical category for apnea severity (normal, mild,
moderate, severe), with a Cohen’s Kappa of 0.86
and 0.83 for AHI and RDI, respectively (P ' .0001
given H0: categorical agreements occurred by
chance). Moreover, spectrogram-based scoring re-
quired on average only 5.2 min for each record
(range: 1.6 –10.0 min; SD: 2.7 min). Overall, these
results suggest that the multitaper spectrogram is
an efficient tool for characterizing sleep that can
produce clinically equivalent diagnostic results
based on TST, in addition to providing rich infor-
mation not captured by the traditional staging
hypnogram.

Discussion

In this work, we have rigorously detailed the ad-
vantageous statistical properties of multitaper
spectral estimation over the periodogram and sin-
gle-taper spectral estimates, and have illustrated
the application of the multitaper spectrogram to
the analysis of sleep EEG spectral dynamics. Fur-
thermore, we have provided strong statistical evi-
dence that multitaper spectral analysis can identify
differences in the sleep EEG that cannot be distin-
guished using traditional single-taper methods
(see APPENDIX). We have contrasted and compared
the multitaper spectrogram to traditional sleep
scoring, and demonstrated proof-of-concept for
different domains of clinical application. Overall,
the multitaper spectrogram provides a precise
characterization of the continuum of complex os-
cillatory dynamics in the brain during sleep and
wakefulness, and contains a wealth of information
lost in traditional sleep scoring. Thus the multita-
per spectrogram enables a rich empirical frame-
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FIGURE 12. The multitaper spectrogram reveals extreme fragmentation of NREM during respiratory
events
In A, the hypnogram (top) occipital clinical multitaper sleep EEG spectrogram (middle) and the timing of technician-scored
respiratory events (bottom) are shown for a subject with moderate to severe apnea (AHI: 27.9, RDI: 33.0). The multitaper
spectrogram reveals a dramatic change during a series of respiratory (apnea and hypopnea) events occurring during NREM
sleep. At the onset of the respiratory events, the low-frequency power typical of NREM becomes highly fragmented, with
suppression and coincident reappearance of power in delta/theta, alpha, and sigma at each event.
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work for objectively phenotyping sleep as a
function of oscillatory dynamics. We believe that
this approach holds great promise for advancing
clinical sleep medicine and sleep research.

These quantitative benefits suggest several
major practical advantages of a multitaper spec-
tral approach to sleep EEG analysis. Clinically,
the multitaper spectrogram provides an easy and
powerful way to characterize a whole night of
sleep dynamics in a single view, with a resolution
that enables detailed analysis down to the
microevent level. Thus the multitaper spectrogram
could facilitate or replace traditional R&K methods
by providing a way to rapidly identify spectral motifs
for visual or automated staging of sleep. Inspection of
the full-night multitaper spectrogram alone could be
used to provide an initial rapid assessment of overall
sleep architecture and fragmentation, as well as a
means of triaging more time-consuming or costly
subsequent analyses. There are also clinical
scenarios such as split night studies and multiple
sleep latency tests (MSLT) in which sleep staging
and/or total sleep time (TST) must be estimated on
the fly. The results of our spectral scoring experiment
suggest that the multitaper EEG spectrogram could
provide a clinically equivalent basis for estimating
TST in these scenarios, the accuracy of which could
be even further improved by including additional
signals from the PSG. Furthermore, the ability to
effortlessly identify clear features of sleep microstruc-
ture not captured in traditional scoring (i.e., spindles,
K-complexes, peri-REM alpha bursts, etc.) greatly ex-
pands the set of potentially clinically relevant fea-
tures to explore.

From a basic research standpoint, the multita-
per spectrogram could provide a vital link be-
tween animal and human studies. Currently, it is
not always possible to establish definitive equiv-
alence between human sleep neurophysiology
and the networks and cell-types explored in an-
imal studies. This is because the vast preponder-
ance of our knowledge of human sleep comes
from analysis of cortical activity through EEG,
whereas the knowledge gained from animal stud-
ies illuminates subcortical mechanisms. While
intracranial recording is possible in certain clin-
ical populations, these studies are difficult to
undertake, involving patients with severe disor-
ders (e.g., refractory epilepsy). Moreover, it is
generally infeasible to probe certain regions of
human neuroanatomy (e.g., the brain stem).
Other imaging methods such as functional mag-
netic resonance imaging (fMRI) or magnetoen-
cephalography (MEG) offer excellent spatial or
temporal resolution but are costly and are not
conducive of sleep. Thus, for the moment, EEG is
the least invasive, least expensive, least disrup-
tive, highest temporal resolution method for

measuring neurophysiological activity in sleep-
ing humans. We believe that the multitaper spec-
trogram analysis provides an ideal means to
characterize EEG data and relate it to possible
underlying neural mechanisms. For example,
Chervin et al. (23) explored the relationship be-
tween respiratory cycle-related spectral features
of the human EEG to predict OSA-related sleep-
iness, whereas Tartar et al. (92) showed apnea-
like sleep interruption caused an impairment of
long-term potentiation (LTP), a synaptic correlate
of learning and memory, in rodents. Further study
of the broadband effects observed in the multita-
per spectrogram (FIGURE 12) could therefore help
elucidate the mechanisms and effects of OSA on
the human brain, and distinguish sub-phenotypes
that might account for heterogeneous symptom-
atic manifestations of OSA clinically.

Furthermore, given the link between the sleep EEG
and the underlying neural mechanisms, the multita-
per spectrogram could be used to provide deeper
phenotyping of sleep dynamics and oscillation char-
acteristics in healthy subjects as well as in clinical
populations. There is a wealth of data now available
regarding changes in EEG oscillations in a plethora of
sleep disorders, as well as psychiatric and neurolog-
ical disease states. Use of the multitaper spectrogram
could make it possible to discern differences be-
tween healthy and disease states that are impossible
to see using the hypnogram alone. Therefore, we
encourage further use of this method in sleep re-
search, particularly in neurological and psychiatric
problems known to disturb sleep.

There are several technical enhancements that
could further improve this proposed methodol-
ogy. In this work, we have shown that all major
R&K features of the sleep EEG can be observed
within a single occipital multitaper spectrogram.
At the same time, in our experimental data fig-
ures, we used a combination of occipital and
central electrodes, which, in our experience en-
hances the clarity of the resulting sleep EEG
spectrograms. More generally, given the circuit-
specific localization of sleep processes within the
brain (52, 66, 97), this approach could be made
even more informative by utilizing spatial infor-
mation in multi-channel or high-density EEG
measurements. Addionally, we thus far have il-
lustrated the application of the multitaper spec-
trogram to sleep EEG characterization in a
qualitative manner. This approach, however,
provides a rich framework for quantitative anal-
yses of sleep states and characteristics. To those
ends, future studies could leverage recent work
that has developed signal processing techniques
for tracking the nonstationary dynamics of many
simultaneous neural oscillations within the mul-
titaper spectrogram (74) or state-space methods
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for modeling the changes in the oscillations as a
function of sleep state (73). Overall, the multita-
per spectrogram provides an objective, high-res-
olution, statistically efficient basis for powerful
analyses, which could help to further illuminate
the mechanisms of the sleeping brain. "

APPENDIX

Spectral Estimation Techniques.

In this section, we describe the most common
methods for spectral estimation, and the moti-

vating factors for the multitaper method. For a
detailed overview of spectral estimation and the
multitaper method, see Babadi and Brown (13).

The most common method of spectral estima-
tion is the periodogram, which uses the discrete
Fourier transform (33, 46) as the basis of spectral
decomposition. For a random signal xk, sampled
at intervals of #t where k $ 0, . . . , N % 1, Ŝp(f ),
the periodogram at frequency f is defined as

Ŝp!f " ! "t# $
k!0

N$ 1

xke 2&kf"t#2

. (3 )

FIGURE 13. The multitaper spectrogram quantitatively characterizes changes in sleep state that are too subtle to detect
using the single-taper spectrogram
A: the single-taper (Hanning) (top) and multitaper (bottom) spectrograms were computed for a single channel of occipital EEG during NREM,
from which the spectra were extract from 2-min segments around early (marker A) and late (marker B) stage N2 sleep. B: a global acceptance
bounds analysis of the single-taper spectrogram (top) showed no significant differences (green regions) between the two time periods, whereas
the same analysis on the multitaper spectra (bottom) showed significant differences in frequency content in delta, alpha, sigma, and gamma
power. C: in a second analysis, the single-taper (Hanning) (top) and multitaper (bottom) spectrograms were computed for a single channel of oc-
cipital EEG during REM, from which the spectra were extract from peri-REM burst times and non-burst times. D: a global acceptance bounds
analysis of the single-taper spectrogram (top) shows no significant differences (green regions) between the burst and non-burst spectra, whereas
the same analysis on the multitaper spectra (bottom) showed significant differences in frequency content low-alpha power. In these analyses, the
observed difference in spectral power (magenta curves) is compared with global acceptance bands (black curves) constructed using the proce-
dures outlined in Ref. 35. Contiguous points at which the observed spectral difference exceeds the global bounds are considered significantly
different.
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Sticky Note
In the original manuscript, equations 3,4 and 6 had typos. These typos are now corrected in this manuscript with overlaid images.



Because of the finite duration of experimen-
tally observed signals, the periodogram suffers
from two potential problems. First, the spectral
estimate is biased; i.e., on average, the periodo-
gram will be different from the true underlying
spectrum. The consequence of this bias is that
peaks within the spectrum can appear less dis-
tinct and blurred across frequencies. In addition,
the periodogram has high variance due to the
fact that the data are a single realization of a
random signal. This produces noisy estimates of
the spectrum.

In an effort to reduce the estimate bias, a com-
mon technique is to apply a taper or a window to
the data. Common tapers used are Welch, Han-
ning, and Hamming functions, which tend to limit
the amount of bias or blurring. Ŝstp(f), the single-
tapered periodogram at frequency f is defined as

Ŝstp!f " ! "t# $
k!0

N$ 1

wkxke 2&kf"t#2

, (4 )

where wk is the value of the taper at time k.
While the single-tapered spectral estimate re-

duces the estimation bias compared to the peri-
odogram, the commonly used tapers are not
optimal for bias reduction, and the variance of the
spectral estimate is still high.

Multitaper spectral estimation (93) was designed
to improve on the single-taper estimator by simul-
taneously addressing the issues of bias and vari-
ance, and does so by averaging the estimates from
multiple tapers applied to the same data window,
which are optimized to limit bias. These tapers are
taken from a class of functions called the discrete
prolate spheroid sequence (DPSS), also known as
the Slepian sequence. These functions are de-
signed to optimize the concentration of power in
the main lobe with respect to the rest of the func-
tion, such that, for a taper W

max
W

%power in the main lobe

total power &. (5 )

This is referred to as solving the spectral concen-
tration problem. It turns out that optimizing for
main lobe power concentration (which involves
eigenfunctions) produces tapers that are orthogo-
nal, meaning they each extract independent esti-
mates of the spectrum from the same window of
data. In doing so, multiple estimates with reduced
bias can be averaged together to produce a single
estimate of the spectrum with reduced bias and
variance.

The choice of L ! <2TW= $ 1 for the number of
tapers (Eq. 2 ) is based on the fact that the benefit
of adding a taper drops precipitously when the
number of tapers reaches a quantity known as
the Shannon number, which in this case happens
to be equal to 2TW (69). Thus, by setting the
number of tapers to one less than this quantity,
we can produce an efficient estimate that uses no
more than the maximum number of significant
tapers.

Given a set of L DPSS tapers {w1, . . . , wL}, Ŝmt(f),
the multitaper spectral estimate at frequency f is
defined as

Ŝmt!f " !
1

L $
l!1

L # $
k!0

N$ 1

wk
l xke 2&kf"t#2

, (6 )

in which the spectral estimate is the average of the
single-taper estimates for each taper. It can be
shown (7) that the multitaper estimate reduces the
variance by a factor of approximately L compared
with single-tapered estimates.

Quantitative Advantages of Multitaper
Spectral Analysis

To establish the quantitative improvement of the
multitaper spectrogram over the single-taper spec-

FIGURE 14. The experimental (A) and clinical (B) EEG electrode montages used for
spectral estimation
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trogram, we performed an analysis testing the abil-
ity of each method to distinguish differences in the
sleep EEG between two meaningful contexts. To do
so, we employed an established procedure (35) for
detecting significant regions of difference in mul-
tidimensional data by constructing global accep-
tance bounds for hypothesis testing. Given two sets
of spectra from different conditions, the method
constructs a null distribution on the mean differ-
ence between groups by repeatedly permuting the
conditions labels and generating the mean differ-
ence between sets at each iteration. Given this null
distribution, the method constructs global accep-
tance bounds (FIGURE 13, black curves) by finding
the region that completely contains 95% of the
permuted means across every single frequency. By
doing so, the method controls the family-wise
error rate (FWER), and thus every frequency at
which the observed difference between the two
conditions falls outside of these global bounds is
considered significant. Contiguous significant
frequencies are thus considered regions of
significance.

Using this procedure, we assessed the degree
with which the single-taper (Hanning) and multi-
taper spectrogram could distinguish between
changes in spectral power occurring during the
transition from NREM Stage N2 sleep to Stage N3
sleep (FIGURE 13, A AND B). We first estimated
single-taper (FIGURE 13A, TOP) and multitaper
(FIGURE 13A, BOTTOM) spectrograms for a single
channel of occipital EEG during NREM. For each
spectrogram, we performed the global confidence
analysis comparing the difference between spectra
drawn from 2-min segments around a time point
in Stage N2 sleep (marker A) and from another
time point in Stage N3 sleep (marker B). In this
case, the multitaper spectrogram was able to de-
tect differences in sleep state that are indistin-
guishable from the single-taper spectrogram. The
global acceptance analysis of the single-taper spec-
trogram (FIGURE 13B, TOP) showed no major con-
tiguous regions of significance (green regions)
between the two time periods, whereas the same
analysis on the multitaper spectra (FIGURE 13B,
BOTTOM) showed clear regions of significance in
frequency content in delta, alpha, sigma, and
gamma power.

We also assessed the degree with which single-
taper and multitaper spectrogram could identify
microevents during REM (FIGURE 13, C AND D).
We proceeded as in the NREM analysis, estimating
single-taper (FIGURE 13C, TOP) and multitaper
(FIGURE 13C, BOTTOM) spectrograms for a single
channel of occipital EEG during REM, from which
times containing peri-REM alpha bursting were
compared with non-burst times. Again, the multi-
taper spectrogram was able to detect differences in

sleep state that are indistinguishable from the sin-
gle-taper spectrogram. The global acceptance
analysis of the single-taper spectrogram (FIGURE
13D, TOP) showed no major contiguous regions of
significance (green regions) between the two time
periods, whereas the same analysis on the multi-
taper spectra (FIGURE 13D, BOTTOM) showed
clear regions of significance in frequency content
in the alpha range in which the bursting occurs.

These analyses therefore rigorously demonstrate
the ability of the multitaper to discern the differ-
ence between EEG events too subtle to detect us-
ing traditional single-taper methods.

Electrode Montages for Spectral Estimation

FIGURE 14 shows the electrode montages used to
construct the experimental and clinical sleep
EEG spectrograms. The experimental data were
recorded using a 64-channel Brain Vision system
with Laplacian referencing (FIGURE 14A). The
experimental spectrograms (excluding the sin-
gle-channel examples) are the median spectro-
gram from the frontal (light gray) or occipital
(dark gray) electrodes. The clinical data were
recording using a standard clinical setup with
contralateral mastoid referencing, as per AASM
standards (FIGURE 14B). Clinical spectrograms
are the median of the two occipital channels.

The authors have developed a companion series of in-
teractive online tutorials for this review at sleepeeg.org.
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